题目列表(包括答案和解析)
4.(2010四川文)(15)如图,二面角的大小是60°,线段.,
与所成的角为30°.则与平面所成的角的正弦值是 .
[答案]
[解析]过点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D
连结AD,有三垂线定理可知AD⊥l,故∠ADC为二面角的平面角,为60°
又由已知,∠ABD=30°连结CB,则∠ABC为与平面所成的角
设AD=2,则AC=,CD=1
AB==4
∴sin∠ABC=
3.(2010北京理)(14)如图放置的边长为1的正方形PABC沿x轴滚动。设顶点p(x,y)的轨迹方程是,则的最小正周期为 ;在其两个相邻零点间的图像与x轴所围区域的面积为
[答案]4
说明:“正方形PABC沿轴滚动”包括沿轴正方向和沿轴负方向滚动。沿轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在轴上时,再以顶点B为中心顺时针旋转,如此继续。类似地,正方形PABC可以沿轴负方向滚动。
2.(2010北京文)(14)如图放置的边长为1的正方形PABC沿x轴滚动。
设顶点p(x,y)的纵坐标与横坐标的函数关系是
,则的最小正周期为 ;
在其两个相邻零点间的图像与x轴
所围区域的面积为 。
[答案]4
说明:“正方形PABC沿x轴滚动”包含沿x轴正方向和沿x轴负方向滚动。沿x轴正方向滚动是指以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续,类似地,正方形PABC可以沿着x轴负方向滚动。
1.(2010江西理)16.如图,在三棱锥中,三条棱,,两两垂直,且>>,分别经过三条棱,,作一个截面平分三棱锥的体积,截面面积依次为,,,则,,的大小关系为 。
[答案]
[解析]考查立体图形的空间感和数学知识的运用能力,通过补形,借助长方体验证结论,特殊化,令边长为1,2,3得。
8.(2010四川文)(12)半径为的球的直径垂直于平面,垂足为,是平面内边长为的正三角形,线段、分别与球面交于点、,那么、两点间的球面距离是
(A) (B)
(C) (D)
[答案]A
[解析]由已知,AB=2R,BC=R,故tan∠BAC=
cos∠BAC=
连结OM,则△OAM为等腰三角形
AM=2AOcos∠BAC=,同理AN=,且MN∥CD
而AC=R,CD=R
故MN:CD=AN:AC
Þ MN=,
连结OM、ON,有OM=ON=R
于是cos∠MON=
所以M、N两点间的球面距离是
7.(2010全国卷1理)(7)正方体ABCD-中,B与平面AC所成角的余弦值为
(A) (B) (C) (D)
6.(2010全国卷1理)(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为
(A) (B) (C) (D)
5.(2010全国卷1文)(9)正方体-中,与平面所成角的余弦值为
(A) (B) (C) (D)
[答案]D
[命题意图]本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D到平面AC的距离是解决本题的关键所在,这也是转化思想的具体体现.
[解析1]因为BB1//DD1,所以B与平面AC所成角和DD1与平面AC所成角相等,设DO⊥平面AC,由等体积法得,即.设DD1=a,
则,.
所以,记DD1与平面AC所成角为,则,所以.
[解析2]设上下底面的中心分别为;与平面AC所成角就是B与平面AC所成角,
4.(2010全国卷2文)(8)已知三棱锥中,底面为边长等于2的等边三角形,垂直于底面,=3,那么直线与平面所成角的正弦值为
(A) (B)
(C) (D)
[答案]D
[解析]:本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角。
过A作AE垂直于BC交BC于E,连结SE,过A作AF垂直于SE交SE于F,连BF,∵正三角形ABC,∴ E为BC中点,∵ BC⊥AE,SA⊥BC,∴ BC⊥面SAE,∴ BC⊥AF,AF⊥SE,∴ AF⊥面SBC,∵∠ABF为直线AB与面SBC所成角,由正三角形边长3,∴ ,AS=3,∴ SE=,AF=,∴
3.(2010全国卷2文)(11)与正方体ABCD-A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点
(A)有且只有1个 (B)有且只有2个
(C)有且只有3个 (D)有无数个
[答案]D
[解析]:本题考查了空间想象能力
∵到三条两垂直的直线距离相等的点在以三条直线为轴,以正方体边长为半径的圆柱面上,∴三个圆柱面有无数个交点,
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com