题目列表(包括答案和解析)
3.(师大附中理)设是半径为2的球面上四个不同的点,且满足两两互相垂直,则的最大值是__________。
答案:8
2.(肥城市第二次联考)如右图所示,在正方体中,分别是
,的中点,则以下结论中不成立的是( C )
A.与垂直 B.与垂直
C.与异面 D.与异面
答案 C
解析:连结,在中,,所以A、B、D正确,C错,选C。
1.(师大附中理)如图1,是正方形所在平面外一点,平面,,则与所成的角的度数为
A. B.
C. D.
答案:C
2010年联考题
4. (2008福建18)如图,在四棱锥P-ABCD中,则面PAD⊥底面 ABCD,侧棱PA=PD=,底面ABCD为直角梯形,
其中BC∥ AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PD与CD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出 的值;若不存在,请说明理由.
(Ⅰ)证明 在△PAD中PA=PD,O为AD中点,所以PO⊥AD,
又侧面PAD⊥底面ABCD,平面平面ABCD=AD, 平面PAD,
所以PO⊥平面ABCD.
(Ⅱ)解 以O为坐标原点,的方向分别为x轴、y轴、
z轴的正方向,建立空间直角坐标系O-xyz,依题意,易得
A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1),
所以
所以异面直线PB与CD所成的角是arccos,
(Ⅲ)解 假设存在点Q,使得它到平面PCD的距离为,
由(Ⅱ)知
设平面PCD的法向量为n=(x0,y0,z0).
则所以即,
取x0=1,得平面PCD的一个法向量为n=(1,1,1).
设由,得
解y=-或y=(舍去),
此时,所以存在点Q满足题意,此时.
3. (2008湖南17 )如图所示,四棱锥P-ABCD的底面
ABCD是边长为1的菱形,∠BCD=60°,E是CD
的中点,PA⊥底面ABCD,PA=2.
(Ⅰ)证明:平面PBE⊥平面PAB;
(Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小.
如图所示,以A为原点,建立空间直角坐标系.则相关各点的
坐标分别是A(0,0,0),B(1,0,0),
P(0,0,2),
(Ⅰ)证明 因为,
平面PAB的一个法向量是,
所以共线.从而BE⊥平面PAB.
又因为平面PBE,
故平面PBE⊥平面PAB.
(Ⅱ)解 易知
设是平面PBE的一个法向量,则由得
所以
设是平面PAD的一个法向量,则由得所以故可取
于是,
故平面PAD和平面PBE所成二面角(锐角)的大小是
2. (2008安徽)如图,在四棱锥中,底面四边长
为1的菱形,, , ,为
的中点,为的中点
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
作于点P,如图,分别以AB,AP,AO所在直线为
轴建立坐标系
,
(1)证明
设平面OCD的法向量为,则
即
取,解得
(2)解 设与所成的角为,
, 与所成角的大小为.
(3)解 设点B到平面OCD的距离为,
则为在向量上的投影的绝对值,
由 , 得.所以点B到平面OCD的距离为
1. (2008全国Ⅱ19)(本小题满分12分)
如图,正四棱柱中,,点在上且.
(Ⅰ)证明:平面;
(Ⅱ)求二面角的大小.
以为坐标原点,射线为轴的正半轴,
建立如图所示直角坐标系.依题设,.
,
.
(Ⅰ)证明 因为,,
故,.
又,
所以平面.
(Ⅱ)解 设向量是平面的法向量,则
,.
故,.
令,则,,.
等于二面角的平面角,
.
所以二面角的大小为.
14.(本题满分14分)
如图,在直三棱柱中,,
,求二面角的大小。
简答:
2008年高考题
解答题
12.(本小题满分12分)
在四棱锥中,底面是矩形,平面,,. 以的中点为球心、为直径的球面交于点,交于点.
(1)求证:平面⊥平面;
(2)求直线与平面所成的角的大小;
(3)求点到平面的距离.
方法二:
(1)同方法一;
(2)如图所示,建立空间直角坐标系,则,,, ,,;设平面的一个法向量,由可得:,令,则
。设所求角为,则,
所以所求角的大小为。
(3)由条件可得,.在中,,所以,则, ,所以所求距离等于点到平面距离的,设点到平面距离为则,所以所求距离为。
19(本小题满分12分)
如图,正方形所在平面与平面四边形所在平面互
相垂直,△是等腰直角三角形,
(I)求证:;
(II)设线段的中点为,在直线上是否存在一点,使得?若存在,请指出点的位置,并证明你的结论;若不存在,请说明理由;
(III)求二面角的大小。
(Ⅰ)因为△ABE为等腰直角三角形,AB=AE,
所以AE⊥AB.
又因为平面ABEF⊥平面ABCD,AE平面ABEF,
平面ABEF∩平面ABCD=AB,
所以AE⊥平面ABCD.
所以AE⊥AD.
因此,AD,AB,AE两两垂直,以A为坐标原点,建立 如图所示的直角坐标系A-xyz.
设AB=1,则AE=1,B(0,1,0),D (1, 0, 0 ) ,
E ( 0, 0, 1 ), C ( 1, 1, 0 ).
因为FA=FE, ∠AEF = 45°,
所以∠AFE= 90°.
从而,.
所以,,.
,.
所以EF⊥BE, EF⊥BC.
因为BE平面BCE,BC∩BE=B ,
所以EF⊥平面BCE.
(Ⅱ)存在点M,当M为AE中点时,PM∥平面BCE.
M ( 0,0, ), P ( 1, ,0 ).
从而=,
于是·=·=0
所以PM⊥FE,又EF⊥平面BCE,直线PM不在平面BCE内,
故PMM∥平面BCE. ………………………………8分
(Ⅲ)设平面BDF的一个法向量为,并设=(x,y,z).
,
即
取y=1,则x=1,z=3。从而。
取平面ABD的一个法向量为。
。
故二面角F-BD-A的大小为arccos。……………………………………12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com