题目列表(包括答案和解析)
2010年高考题
6. (2009年广东省广州市高三年级调研测试)如图,已知
等腰直角三角形,其中∠=90º,.
点A、D分别是、的中点,现将△沿着边
折起到△位置,使⊥,连结、.
(1)求证:⊥;
(2)求二面角的平面角的余弦值.
(1)证明 ∵点A、D分别是、的中点,
∴.
∴∠=90º.
∴.
∴ ,
∵,
∴⊥平面.
∵平面,
∴.
(2)解 建立如图所示的空间直角坐标系.
则(-1,0,0),(-2,1,0),(0,0,1).
∴=(-1,1,0),=(1,0,1),
设平面的法向量为=(x,y,z),则:
,
令,得,
∴=(1,1,-1).
显然,是平面的一个法向量,=().
∴cos<,>=.
∴二面角的平面角的余弦值是.
5.(广东省高明一中2009届高三上学期第四次月考)如图,
已知平面,平面,△为
等边三角形,,为的中点.
(1) 求证:平面;
(2) 求证:平面平面;
(3) 求直线和平面所成角的正弦值.
设,建立如图所示的坐标系,则
.
∵为的中点,∴.
(1) 证明 ,
∵,平面,∴平面.
(2) 证明 ∵,
∴,∴.
∴平面,又平面,
∴平面平面.
(3) 解 设平面的法向量为,由可得:
,取.
又,设和平面所成的角为,则
.
∴直线和平面所成角的正弦值为.
4.(广东省北江中学2009届高三上学期12月月考)如图,
在四面体ABCD中,O、E分别是BD、BC的中点,
(1)求证:平面BCD;
(2)求异面直线AB与CD所成角的余弦值;
(3)求点E到平面ACD的距离.
⑴ 证明 连结OC
,.
在中,由已知可得
而,
即
∴平面.
(2)解 以O为原点,如图建立空间直角坐标系,
则
,
∴ 异面直线AB与CD所成角的余弦值为.
⑶解 设平面ACD的法向量为则
,
∴,令得是平面ACD的一个法向量.
又 ∴点E到平面ACD的距离 .
3.(厦门市第二外国语学校2008-2009学年高三数学第四次月考)已知点H在正方体的对角线上,∠HDA=.
(Ⅰ)求DH与所成角的大小;
(Ⅱ)求DH与平面所成角的大小.
解:以为原点,为单位长建立空间直角坐标系.
设
则,.连结,.
设,由已知,
由
可得.解得,
所以.(Ⅰ)因为,
所以.即DH与所成的角为.
(Ⅱ)平面的一个法向量是.
因为, 所以.
可得DH与平面所成的角为.
2. (陕西省西安铁一中2009届高三12月月考)如图,边长为2的等
边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,
M为BC的中点
(Ⅰ)证明:AM⊥PM ;
(Ⅱ)求二面角P-AM-D的大小;
(Ⅲ)求点D到平面AMP的距离。
(Ⅰ) 证明 以D点为原点,分别以直线DA、DC为x轴、y轴,
建立如图所示的空间直角坐标系,
依题意,可得
∴
∴
即,∴AM⊥PM .
(Ⅱ)解 设,且平面PAM,则
即
∴ ,
取,得
取,显然平面ABCD, ∴
结合图形可知,二面角P-AM-D为45°;
(Ⅲ) 设点D到平面PAM的距离为,由(Ⅱ)可知与平面PAM垂直,则
=
即点D到平面PAM的距离为
1.(湖南省衡阳市八中2009届高三第三次月考试题)如图,P-ABCD是正四棱锥,是正方体,其中
(1)求证:;
(2)求平面PAD与平面所成的锐二面角的余弦值;
(3)求到平面PAD的距离
以为轴,为轴,为轴建立空间直角坐标系
(1)证明 设E是BD的中点,P-ABCD是正四棱锥,∴
又, ∴ ∴∴
∴ , 即。
(2)解 设平面PAD的法向量是,
∴ 取得,又平面的法向量是∴ , ∴。
(3)解 ∴到平面PAD的距离。
7、(2009南华一中12月月考)正四棱锥S-ABCD中,O为底面中心,E为SA的中点,AB=1,直线AD到平面SBC的距离等于.
(1)求斜高SM的长;
(2)求平面EBC与侧面SAD所成锐二面角的小;
解法一:(1)连OM,作OH⊥SM于H.
∵SM为斜高,∴M为BC的中点,
∴BC⊥OM.
∵BC⊥SM,∴BC⊥平面SMO.
又OH⊥SM,∴OH⊥平面SBC. 2分
由题意,得.
设SM=x,
则,解之,即.…………………6分
(2)设面EBC∩SD=F,取AD中点N,连SN,设SN∩EF=Q.
∵AD∥BC,∴AD∥面BEFC.而面SAD∩面BEFC=EF,∴AD∥EF.
又AD⊥SN,AD⊥NM,AD⊥面SMN.
从而EF⊥面SMN,∴EF⊥QS,且EF⊥QM.
∴∠SQM为所求二面角的平面角,记为α.……… 7分
由平几知识,得.
∴,∴.
∴,即
所求二面角为. ……… 12分
解法二:(1)建立空间坐标系(如图)
∵底面边长为1,∴,
,,
. ……………1分
设,
平面SBC的一个法向,
则,.
∴,.
∴y=2h,n=(0,2h,1).… 3分
而=(0,1,0),由题意,得 .解得.
∴斜高. …………………………………………6分
(2)n=(0,2h,1)=,
由对称性,面SAD的一个法向量为n1=………8分
设平面EBC的一个法向量n2=(x,y,1),由
,,得
解得∴.…10分
设所求的锐二面角为α,则
,∴.……… 12分
2009年联考题
6、(2009昆明市期末)如图,在正三棱柱ABC-A1B1C1中,BB1=2,BC=2,D为B1C1的中点。
(Ⅰ)证明:B1C⊥面A1BD;
(Ⅱ)求二面角B-AC-B1的大小。
方法一:
(Ⅰ)证明:在Rt△BB1D和Rt△B1C1C中,
由 得
△BB1D∽△B1C1C,∠B1DB=∠B1CC1。
又 ∠CB1D+∠B1CC1=90°
故 ∠CB1D+∠B1DB=90°
故 B1C⊥BD.·····················3分
又 正三棱柱ABC-A1B1C1,D为B1C1的中点。
由 A1D⊥平面B1C,
得 A1D⊥B1C
又A1D∩B1D=D,
所以 B1C⊥面A1BD。···················································6分
(Ⅱ)解:设E为AC的中点,连接BE、B1E。
在正三棱柱ABC-A1B1C1中,B1C=B1A,∴B1E⊥AC,BE⊥AC,
即 ∠BEB1为二面角B-AC-B1的平面角·································9分
又
故
所以 二面角的大小为······································12分
方法二:
(Ⅰ)证明:设BC的中点为O,如图建立空间直角坐标系O-xyz
依题意有
则
由
故
又
所以
故 又 BD∩BA1=B
所以 B1C⊥面A1BD,
(Ⅱ)依题意有
设⊥平面ACB1,⊥平面ABC。
求得
故
所以 二面角的大小为······································12分
5、(2009深圳一模)如图,为圆的直径,点、在圆上,,矩形和圆所在的平面互相垂直.已知,.
(Ⅰ)求证:平面平面;
(Ⅱ)求直线与平面所成角的大小;
(Ⅲ)当的长为何值时,二面角的大小为?
解:(Ⅰ)证明:平面平面,,
平面平面=,
平面.
平面,,
又为圆的直径,,
平面.
平面,平面平面. …………………4分
(Ⅱ)根据(Ⅰ)的证明,有平面,为在
平面上的射影,
因此,为直线与平面所成的角. ………………………5分
,四边形为等腰梯形,
过点作,交于.
,,则.
在中,根据射影定理,得.…………………7分
,.
直线与平面所成角的大小为. …………………8分
(Ⅲ)(解法一)过点作,交的延长线于点,连.
根据(Ⅰ)的证明,平面,则,
为二面角的平面角,.…………………9分
在中,,,. ………………… 10分
又四边形为矩形, .
.
因此,当的长为时,二面角的大小为. …………………12分
(解法二)设中点为,以为坐标原点,、、方向
分别为轴、轴、轴方向建立空间直角坐标系(如图)
设,则点的坐标为
在中,,,.
点的坐标为,点的坐标为,
,
设平面的法向量为,则,.
即 令,解得
…………………10分
取平面的一个法向量为,依题意与的夹角为
,即, 解得(负值舍去)
因此,当的长为时,二面角的大小为. …………………12分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com