题目列表(包括答案和解析)
1.(2010上海文)20.(本大题满分14分)本题共有2个小题,第1小题满分7分,第2
小题满分7分.
如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用平方米塑料片制成圆柱的侧面和下底面(不安装上底面).
(1)当圆柱底面半径取何值时,取得最大值?并求出该
最大值(结果精确到0.01平方米);
(2)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出
用于灯笼的三视图(作图时,不需考虑骨架等因素).
解析:(1) 设圆柱形灯笼的母线长为l,则l=1.2-2r(0<r<0.6),S=-3p(r-0.4)2+0.48p, 所以当r=0.4时,S取得最大值约为1.51平方米; (2) 当r=0.3时,l=0.6,作三视图略.
7.(2010天津理)(12)一个几何体的三视图如图所示,则这个几何体的体积为
[答案]
[解析]本题主要考查三视图的概念与柱体、椎体体积的计算,属于容易题。
由三视图可知,该几何体为一个底面边长为1,高为2的正四棱柱与一个底面边长为2,高为1的正四棱锥组成的组合体,因为正巳灵珠的体积为2,正四棱锥的体积为,所以该几何体的体积V=2+ =
[温馨提示]利用俯视图可以看出几何体底面的形状,结合正视图与侧视图便可得到几何体的形状,求锥体体积时不要丢掉哦。
6.(2010天津文)(12)一个几何体的三视图如图所示,则这个几何体的体积为 。
[答案]3
[解析]本题主要考查三视图的基础知识,和主题体积的计算,属于容易题。
由俯视图可知该几何体的底面为直角梯形,则正视图和俯视图可知该几何体的高为1,结合三个试图可知该几何体是底面为直角梯形的直四棱柱,所以该几何题的体积为
[温馨提示]正视图和侧视图的高是几何体的高,由俯视图可以确定几何体底面的形状,本题也可以将几何体看作是底面是长为3,宽为2,高为1的长方体的一半。
5.(2010辽宁理)(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.
[答案]
[命题立意]本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力。
[解析]由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为
4.(2010辽宁文)(16)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的
长为 .
解析:填画出直观图:图中四棱锥即是,
所以最长的一条棱的长为
3.(2010浙江理)(12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是___________.
解析:图为一四棱台和长方体的组合体的三视图,由卷中所给公式计算得体积为144,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题
2.(2010湖南文)13.图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm
[答案]4
1.(2010上海文)6.已知四棱椎的底面是边长为6 的正方形,侧棱底面,且,则该四棱椎的体积是 。
[答案]96
[解析]考查棱锥体积公式
14.(2010全国卷1文)(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为
(A) (B) (C) (D)
[答案]B
[命题意图]本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.
[解析]过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为,则有,当直径通过AB与CD的中点时,,故
13.(2010福建文)3.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )
A. B.2
C. D.6
[答案]D
[解析]由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为
,侧面积为,选D.
[命题意图]本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com