题目列表(包括答案和解析)
5. (马鞍山学业水平测试)(本小题满分8分)
如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.
(Ⅰ)证明:AD⊥D1F;
(Ⅱ)求AE与D1F所成的角;
(Ⅲ)证明:面AED⊥面A1FD1.
解:以D为原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系.
设正方体的棱长为1…………………………………………………………………………1分
则有A(1,0,0),E(1,2,),F(0,,0),D1(0,0,1),A1(1,0,1)……2分
(Ⅰ),∴AD⊥D1F………………………4分
(Ⅱ),∴AE⊥D1F
AE与D1F所成的角为900…………………………………………………………………6分
(Ⅲ)由以上可知D1F⊥平面AED,又D1F在平面A1FD1内,
∴面AED⊥面A1FD1……………………………………………………………………8分
|
是以为斜边的等腰直角三角形,分别为,
,的中点,,.
(I)设是的中点,证明:平面;
(II)证明:在内存在一点,使平面.
证明:(I)如图,连结OP,以O为坐标原点,分别以OB、OC、OP所在
直线为轴,轴,轴,建立空间直角坐标系O,则
,由题意得,因,因此平面BOE的法向量为,得,又直线不在平面内,因此有平面
(II)设点M的坐标为,则,因为平面BOE,所以有,因此有,即点M的坐标为,在平面直角坐标系中,的内部区域满足不等式组,经检验,点M的坐标满足上述不等式组,所以在内存在一点,使平面,
4.(池州市七校元旦调研)设向量,满足:,,.以,,的模为边长构成三角形,则它的边与半径为的圆的公共点个数最多为 ( )
A. B. C. D.
答案:C
[解析]对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.
3.(师大附中理)设是半径为2的球面上四个不同的点,且满足两两互相垂直,则的最大值是__________。
答案:8
2.(肥城市第二次联考)如右图所示,在正方体中,分别是
,的中点,则以下结论中不成立的是( C )
A.与垂直 B.与垂直
C.与异面 D.与异面
答案 C
解析:连结,在中,,所以A、B、D正确,C错,选C。
1.(师大附中理)如图1,是正方形所在平面外一点,平面,,则与所成的角的度数为
A. B.
C. D.
答案:C
2010年联考题
7.(2005江西)如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1-EC-D的大小为.
以D为坐标原点,直线DA,DC,DD1分别为x, y, z轴,建 立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),
E(1,x,0),A(1,0,0),C(0,2,0)
(1)证明
(2)解 因为E为AB的中点,则E(1,1,0),
从而,
,
设平面ACD1的法向量为,
则
也即,得,从而,所以点E到平面AD1C的距离为
(3)解 设平面D1EC的法向量,
∴
由 令b=1, ∴c=2,a=2-x,
∴
依题意
∴(不合,舍去), .
∴AE=时,二面角D1-EC-D的大小为.
6.(2006广东卷)如图所示,AF、DE分别是⊙O、⊙O1的直
径.AD与两圆所在的平面均垂直,AD=8,BC是⊙O的直径,
AB=AC=6,OE//AD.
(Ⅰ)求二面角B-AD-F的大小;
(Ⅱ)求直线BD与EF所成的角.
解 (Ⅰ)∵AD与两圆所在的平面均垂直,
∴AD⊥AB, AD⊥AF,故∠BAD是二面角B-AD-F的平面角,
依题意可知,ABCD是正方形,所以∠BAD=450.
即二面角B-AD-F的大小为450.
(Ⅱ)以O为原点,BC、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,,0),B(,0,0),D(0,,8),E(0,0,8),F(0,,0)
所以,
.
设异面直线BD与EF所成角为,
则
直线BD与EF所成的角为
5. (2007福建理•18)如图,正三棱柱ABC-A1B1C1的所有
棱长都为2,D为CC1中点。
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)求二面角A-A1D-B的大小;
(Ⅲ)求点C到平面A1BD的距离;
(Ⅰ)证明 取中点,连结.
为正三角形,.
在正三棱柱中,平面平面,
平面.
取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,,
,,.
,,
,.
平面.
(Ⅱ)解 设平面的法向量为.
,.
,,
令得为平面的一个法向量.
由(Ⅰ)知平面,
为平面的法向量.
,.
二面角的大小为.
(Ⅲ)解 由(Ⅱ),为平面法向量,
.
点到平面的距离.
4. (2008福建18)如图,在四棱锥P-ABCD中,则面PAD⊥底面 ABCD,侧棱PA=PD=,底面ABCD为直角梯形,
其中BC∥ AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求异面直线PD与CD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出 的值;若不存在,请说明理由.
(Ⅰ)证明 在△PAD中PA=PD,O为AD中点,所以PO⊥AD,
又侧面PAD⊥底面ABCD,平面平面ABCD=AD, 平面PAD,
所以PO⊥平面ABCD.
(Ⅱ)解 以O为坐标原点,的方向分别为x轴、y轴、
z轴的正方向,建立空间直角坐标系O-xyz,依题意,易得
A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1),
所以
所以异面直线PB与CD所成的角是arccos,
(Ⅲ)解 假设存在点Q,使得它到平面PCD的距离为,
由(Ⅱ)知
设平面PCD的法向量为n=(x0,y0,z0).
则所以即,
取x0=1,得平面PCD的一个法向量为n=(1,1,1).
设由,得
解y=-或y=(舍去),
此时,所以存在点Q满足题意,此时.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com