题目列表(包括答案和解析)
39.(2009陕西卷理)(本小题满分12分)
已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.
(Ⅰ)求的解析式;(Ⅱ)当,求的值域.
解(1)由最低点为得A=2.
由x轴上相邻的两个交点之间的距离为得=,即,
由点在图像上的
故
又
(2)
当=,即时,取得最大值2;当
即时,取得最小值-1,故的值域为[-1,2]
38.(2009全国卷Ⅱ理)设的内角、、的对边长分别为、、,,,求。
分析:由,易想到先将代入得。然后利用两角和与差的余弦公式展开得;又由,利用正弦定理进行边角互化,得,进而得.故。大部分考生做到这里忽略了检验,事实上,当时,由,进而得,矛盾,应舍去。
也可利用若则从而舍去。不过这种方法学生不易想到。
评析:本小题考生得分易,但得满分难。
37.(2009江西卷理)△中,所对的边分别为,,.
(1)求;
(2)若,求.
解:(1) 因为,即,
所以,
即 ,
得 . 所以,或(不成立).
即 , 得,所以.
又因为,则,或(舍去)
得
(2),
又, 即 ,
得
36.(2009江西卷文)(本小题满分12分)
在△中,所对的边分别为,,.
(1)求;
(2)若,求,,.
解:(1)由 得
则有 =
得 即.
(2) 由 推出 ;而,
即得,
则有 解得
35.(2009全国卷Ⅱ文)(本小题满分12分)设△ABC的内角A、B、C的对边长分别为a、b、c,,,求B.
解析:本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出B=。
解:由 cos(AC)+cosB=及B=π(A+C)
cos(AC)cos(A+C)=,
cosAcosC+sinAsinC(cosAcosCsinAsinC)=,
sinAsinC=.
又由=ac及正弦定理得
故,
或 (舍去),
于是 B= 或 B=.
又由 知或
所以 B=。
34.(2009山东卷文)(本小题满分12分)设函数f(x)=2在处取最小值.
(1) 求.的值;
(2) 在ABC中,分别是角A,B,C的对边,已知,求角C..
解: (1)
因为函数f(x)在处取最小值,所以,由诱导公式知,因为,所以.所以
(2)因为,所以,因为角A为ABC的内角,所以.又因为所以由正弦定理,得,也就是,
因为,所以或.
当时,;当时,.
[命题立意]:本题主要考查了三角函数中两角和差的弦函数公式、二倍角公式和三角函数的性质,并利用正弦定理解得三角形中的边角.注意本题中的两种情况都符合.
33.(2009山东卷理)(本小题满分12分)设函数f(x)=cos(2x+)+sinx.
(1) 求函数f(x)的最大值和最小正周期.
(2) 设A,B,C为ABC的三个内角,若cosB=,,且C为锐角,求sinA.
解: (1)f(x)=cos(2x+)+sinx.=
所以函数f(x)的最大值为,最小正周期.
(2)==-, 所以, 因为C为锐角, 所以,
又因为在ABC 中, cosB=, 所以 , 所以
.
[命题立意]:本题主要考查三角函数中两角和差的弦函数公式、二倍角公式、三角函数的性质以及三角形中的三角关系.
32.(2009江苏卷) 设向量
(1)若与垂直,求的值;
(2)求的最大值;
(3)若,求证:∥.
[解析] 本小题主要考查向量的基本概念,同时考查同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式,考查运算和证明得基本能力。满分14分。
31.(2009北京理)(本小题共13分)
在中,角的对边分别为,。
(Ⅰ)求的值;
(Ⅱ)求的面积.
解析 本题主要考查三角形中的三角函数变换及求值、诱导公式、三角形的面积公式等基础知识,主要考查基本运算能力.
解(Ⅰ)∵A、B、C为△ABC的内角,且,
∴,
∴.
(Ⅱ)由(Ⅰ)知,
又∵,∴在△ABC中,由正弦定理,
∴.
∴△ABC的面积
30.(2009北京文)(本小题共12分)已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)求在区间上的最大值和最小值.
解析 本题主要考查特殊角三角函数值、诱导公式、二倍角的正弦、三角函数在闭区间上的最值等基础知识,主要考查基本运算能力.
解(Ⅰ)∵,
∴函数的最小正周期为.
(Ⅱ)由,∴,
∴在区间上的最大值为1,最小值为.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com