题目列表(包括答案和解析)
44.(2006江苏)今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有 种不同的方法(用数字作答)。
[思路点拨]本题考查排列组合的基本知识.
[正确解答]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有
43.(2006湖北)安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的总数是 .(用数字作答)
答案78
解:分两种情况:(1)不最后一个出场的歌手第一个出场,有种排法(2)不最后一个出场的歌手不第一个出场,有种排法,故共有78种不同排法
42.(2006湖北)某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是 。(用数字作答)
答案20
解析:依题意,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中,可得有=20种不同排法。
41.(2007宁夏理)某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种.(用数字作答)
答案
40.(2007辽宁理)将数字1,2,3,4,5,6拼成一列,记第个数为,若,,,,则不同的排列方法有 种(用数字作答).
答案
39.(2007江苏)某校开设9门课程供学生选修,其中三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有 种不同选修方案。(用数值作答)
答案75
38.(2007浙江文)某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是_________(用数字作答).
答案_
37.(2007陕西文)安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有 种.(用数字作答)
答案
36.(2007陕西理)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有 种.(用数字作答)
答案
35.(2007重庆文)要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为 。(以数字作答)
答案288
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com