题目列表(包括答案和解析)

 0  55665  55673  55679  55683  55689  55691  55695  55701  55703  55709  55715  55719  55721  55725  55731  55733  55739  55743  55745  55749  55751  55755  55757  55759  55760  55761  55763  55764  55765  55767  55769  55773  55775  55779  55781  55785  55791  55793  55799  55803  55805  55809  55815  55821  55823  55829  55833  55835  55841  55845  55851  55859  447348 

3.(2009宁夏海南卷理)对变量x, y 有观测数据理力争()(i=1,2,…,10),得散点图1;对变量u ,v 有观测数据()(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。

A.变量x 与y 正相关,u 与v 正相关   B.变量x 与y 正相关,u 与v 负相关

C.变量x 与y 负相关,u 与v 正相关   D.变量x 与y 负相关,u 与v 负相关

答案  C

解析  由这两个散点图可以判断,变量x 与y 负相关,u 与v 正相关,选C.

试题详情

2.(2009四川卷文)设矩形的长为,宽为,其比满足,这种矩形给人以美感,称为黄金矩形。黄金矩形常应用于工艺品设计中。下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:

甲批次:0.598  0.625  0.628  0.595  0.639

乙批次:0.618  0.613  0.592  0.622  0.620

根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是

  A.甲批次的总体平均数与标准值更接近

  B.乙批次的总体平均数与标准值更接近

  C.两个批次总体平均数与标准值接近程度相同

  D.两个批次总体平均数与标准值接近程度不能确定

答案  A

解析  甲批次的平均数为0.617,乙批次的平均数为0.613

试题详情

1.(2009山东卷理)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的   

产品净重(单位:克)数据绘制的频率分布直方图,其中产品

净重的范围是[96,106],样本数据分组为[96,98),[98,100),

[100,102),[102,104),[104,106],已知样本中产品净重小于

100克的个数是36,则样本中净重大于或等于98克并且

小于104克的产品的个数是          (    ).

A.90       B.75      C.  60      D.45

答案 A

解析  产品净重小于100克的概率为(0.050+0.100)×2=0.300,

已知样本中产品净重小于100克的个数是36,设样本容量为,

,所以,净重大于或等于98克并且小于

104克的产品的概率为(0.100+0.150+0.125)×2=0.75,所以样本

中净重大于或等于98克并且小于104克的产品的个数是

120×0.75=90.故选A.

[命题立意]:本题考查了统计与概率的知识,读懂频率分布直方图,会计算概率以及样本中有关的数据.

试题详情

10. (2010安徽理)21、(本小题满分13分)

   品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这瓶酒,并重新按品质优劣为它们排序,这称为一轮测试。根据一轮测试中的两次排序的偏离程度的高低为其评为。

   现设,分别以表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令

是对两次排序的偏离程度的一种描述。

   (Ⅰ)写出的可能值集合;

(Ⅱ)假设等可能地为1,2,3,4的各种排列,求的分布列;

(Ⅲ)某品酒师在相继进行的三轮测试中,都有

(i)试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);

(ii)你认为该品酒师的酒味鉴别功能如何?说明理由。

2009年高考题

试题详情

9. (2010湖南理)17.(本小题满分12分)

图4是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图

(Ⅰ)求直方图中x的值

(II)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望。

试题详情

8. (2010湖北文)17.(本小题满分12分)

  为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示)

(Ⅰ)在答题卡上的表格中填写相应的频率;

(Ⅱ)估计数据落在(1.15,1.30)中的概率为多少;

(Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数。

试题详情

7. (2010广东理)17.(本小题满分12分)

某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(490,,(495,,……(510,,由此得到样本的频率分布直方图,如图4所示.

  (1)根据频率分布直方图,求重量超过505克的产品数量.

  (2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.

  (3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.

试题详情

6. (2010天津文)(18)(本小题满分12分)

有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据:

其中直径在区间[1.48,1.52]内的零件为一等品。

(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;

(Ⅱ)从一等品零件中,随机抽取2个.

   (ⅰ)用零件的编号列出所有可能的抽取结果;

   (ⅱ)求这2个零件直径相等的概率。本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力。满分12分

 [解析](Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==.

    (Ⅱ)(i)解:一等品零件的编号为.从这6个一等品零件中随机抽取2个,所有可能的结果有:,,,

,,,共有15种.

    (ii)解:“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:,共有6种.

    所以P(B)=.

试题详情

5. (2010安徽文)18、(本小题满分13分)

  某市2010年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):

     61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,

     77,86,81,83,82,82,64,79,86,85,75,71,49,45,

(Ⅰ)  完成频率分布表;

(Ⅱ)作出频率分布直方图;

(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。

请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.

[命题意图]本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识.

[解题指导](1)首先根据题目中的数据完成频率分布表,作出频率分布直方图,根据污染指数,确定空气质量为优、良、轻微污染、轻度污染的天数。

(Ⅲ)答对下述两条中的一条即可:

(1)   该市一个月中空气污染指数有2天处于优的水平,占当月天数的,有26天处于良的水平,占当月天数的,处于优或良的天数共有28天,占当月天数的。说明该市空气质量基本良好。

(2)   轻微污染有2天,占当月天数的。污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的,超过50%,说明该市空气质量有待进一步改善。

[规律总结]在频率分布表中,频数的和等于样本容量,频率的和等于1,每一小组的频率等于这一组的频数除以样本容量.频率分布直方图中,小矩形的高等于每一组的频率/组距,它们与频数成正比,小矩形的面积等于这一组的频率.对于开放性问题的回答,要选择适当的数据特征进行考察,根据数据特征分析得出实际问题的结论.

试题详情

4.(2010辽宁理)(18)(本小题满分12分)

   为了比较注射A, B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B。

   (Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;

(Ⅱ)下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)

表1:注射药物A后皮肤疱疹面积的频数分布表

(ⅰ)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;

(ⅱ)完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.

表3:

解:

(Ⅰ)甲、乙两只家兔分在不同组的概率为

                      ……4分

(Ⅱ)(i)

图Ⅰ注射药物A后皮肤疱疹面积的频率分布直方图   图Ⅱ注射药物B后皮肤疱疹面积的频率分布直方图

可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数。                     ……8分

(ii)表3:

由于K2>10.828,所以有99.9%的把握认为“注射药物A后的疱疹面积于注射药物B后的疱疹面积有差异”。                    ……12分

试题详情


同步练习册答案