题目列表(包括答案和解析)
4.(2009年高考辽宁卷)已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为( )
A.(x+1)2+(y-1)2=2 B.(x-1)2+(y+1)2=2
C.(x-1)2+(y-1)2=2 D.(x+1)2+(y+1)2=2
解析:选B.由题意可设圆心坐标为(a,-a),则=,解得a=1,故圆心坐标为(1,-1),半径r==,所以圆的方程为(x-1)2+(y+1)2=2.
3.(2009年高考上海卷)点P(4,-2)与圆x2+y2=4上任一点连线的中点轨迹方程是( )
A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=1 D.(x+2)2+(y-1)2=1
解析:选A.设圆上任意一点为(x1,y1),中点为(x,y),
则代入x2+y2=4得
(2x-4)2+(2y+2)2=4,化简得(x-2)2+(y+1)2=1.
2.若曲线x2+y2+a2x+(1-a2)y-4=0关于直线y-x=0对称的曲线仍是其本身,则实数a为( )
A.± B.±
C.或- D.-或
解析:选B.由题意知,圆心C(-,)在直线y-x=0上,∴+=0,∴a2=,∴a=±.故选B.
(注:F=-4<0,不需验D2+E2-4F>0)
1.过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是( )
A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4
C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4
解析:选C.设圆心C的坐标为(a,b),半径为r.
∵圆心C在直线x+y-2=0上,∴b=2-a.
由|CA|2=|CB|2得
(a-1)2+(b+1)2=(a+1)2+(b-1)2,
即(a-1)2+(2-a+1)2=(a+1)2+(2-a-1)2,
解得a=1,b=1,∴r=|CA|==2.
即所求圆的方程为(x-1)2+(y-1)2=4.
6.已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.
(1)求线段AP中点的轨迹方程;
(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.
解:(1)设AP中点为M(x,y),
由中点坐标公式可知,P点坐标为(2x-2,2y).
∵P点在圆x2+y2=4上, ∴(2x-2)2+(2y)2=4.
故线段AP中点的轨迹方程为(x-1)2+y2=1.
(2)设PQ的中点为N(x,y),
在Rt△PBQ中,|PN|=|BN|,
设O为坐标原点,则ON⊥PQ,
所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,
所以x2+y2+(x-1)2+(y-1)2=4.
故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.
练习
5.(原创题)已知圆x2+y2+2x-4y+a=0关于直线y=2x+b成轴对称,则a-b的取值范围是________.
解析:圆的方程变为(x+1)2+(y-2)2=5-a,
∴其圆心为(-1,2),且5-a>0,即a<5.
又圆关于直线y=2x+b成轴对称,
∴2=-2+b,∴b=4.∴a-b=a-4<1.
答案:(-∞,1)
4.(2009年高考广东卷)以点(2,-1)为圆心且与直线x+y=6相切的圆的方程是________.
解析:将直线x+y=6化为x+y-6=0,圆的半径r==,所以圆的方程为(x-2)2+(y+1)2=.
答案:(x-2)2+(y+1)2=
3.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于( )
A.π B.4π
C.8π D.9π
解析:选B.设P(x,y),由题知有:(x+2)2+y2=4[(x-1)2+y2],整理得x2-4x+y2=0,配方得(x-2)2+y2=4.可知圆的面积为4π,故选B.
2.已知⊙C:x2+y2+Dx+Ey+F=0,则F=E=0且D<0是⊙C与y轴相切于原点的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:选A.由题意可知,要求圆心坐标为(-,0),而D可以大于0,故选A.
1.圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程为( )
A.(x-2)2+y2=5 B.x2+(y-2)2=5
C.(x+2)2+(y+2)2=5 D.x2+(y+2)2=5
答案:A
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com