题目列表(包括答案和解析)
5.(2009年高考浙江卷)设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{bn}的前n项积为Tn,则T4,________,________,成等比数列.
解析:由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项之和仍成等差数列时,类比到等比数列为依次每4项的积的商成等比数列.下面证明该结论的正确性:
设等比数列{bn}的公比为q,首项为b1,
则T4=b14q6,T8=b18q1+2+…+7=b18q28,
T12=b112q1+2+…+11=b112q66,
∴=b14q22,=b14q38,
即()2=·T4,故T4,,成等比数列.
4.(2010年安徽省皖南八校高三调研)定义集合A,B的运算:A⊗B={x|x∈A或x∈B且x∉(A∩B)},则A⊗B⊗A=________.
解析:如图,A⊗B表示的是阴影部分,设A⊗B=C,运用类比的方法可知,C⊗A=B,所以A⊗B⊗A=B.
答案:B
3.下面使用类比推理恰当的是( )
A.“若a·3=b·3,则a=b”类推出“若a·0=b·0,则a=b”
B.“(a+b)c=ac+bc”类推出“=+”
C.“(a+b)c=ac+bc”类推出“=+(c≠0)”
D.“(ab)n=anbn”类推出“(a+b)n=an+bn”
解析:选C.由类比推理的特点可知.
2.下列表述正确的是( )
①归纳推理是由部分到整体的推理 ②归纳推理是由一般到一般的推理 ③演绎推理是由一般到特殊的推理 ④类比推理是由特殊到一般的推理 ⑤类比推理是由特殊到特殊的推理
A.①②③ B.②③④
C.②④⑤ D.①③⑤
解析:选D.归纳推理是由部分到整体的推理,演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推理.
1.下列几种推理过程是演绎推理的是( )
A.两条直线平行,同旁内角互补,如果∠A与∠B是两条直线的同旁内角,则∠A+∠B=180°
B.某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数均超过50人
C.由平面三角形的性质,推测空间四面体的性质
D.在数列{an}中,a1=1,an=(an-1+)(n≥2),由此归纳出{an}的通项公式
解析:选A.两条直线平行,同旁内角互补(大前提)
∠A与∠B是两条平行直线的同旁内角(小前提)
∠A+∠B=180°(结论)
12.汽车在行驶中,由于惯性作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速40 km/h以内的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了,事发后现场测得甲车的刹车距离略超过12 m,乙车的刹车距离略超过10 m,又知甲、乙两种车型的刹车距离s(m)与车速x(km/h)之间有如下关系:s甲=0.1x+0.01x2,s乙=0.05x+0.005x2.问:超速行驶应负主要责任的是谁?
解:由题意列出不等式组
分别求解,得
由于x>0,从而可得
x甲>30 km/h,x乙>40 km/h.
经比较知乙车超过限速,应负主要责任.
11.设函数f(x)=mx2-mx-1.
(1)若对于一切实数x,f(x)<0恒成立,求m的取值范围;
(2)对于x∈[1,3],f(x)<0恒成立,求m的取值范围.
解:(1)要使mx2-mx-1<0恒成立,
若m=0,显然-1<0;
若m≠0,则⇒-4<m<0.
∴-4<m≤0.
(2)当m=0时,f(x)=-1<0显然恒成立;
当m>0时,由于f(1)=-1<0,要使f(x)<0在x∈[1,3]上恒成立,只要f(3)<0即可.
即9m-3m-1<0得m<,即0<m<;
当m<0时,若Δ<0,由(1)知显然成立,此时-4<m<0;若Δ≥0,则m≤-4,由于函数f(x)<0在x∈[1,3]上恒成立,只要f(1)<0即可,此时f(1)=-1<0显然成立,综上可知:m<.
10.解下列不等式.
(1)19x-3x2≥6;
(2)x+1≥.
解:(1)法一:原不等式可化为3x2-19x+6≤0,
方程3x2-19x+6=0的解为x1=,x2=6.
函数y=3x2-19x+6的图象开口向上且与x轴有两个交点(,0)和(6,0).
所以原不等式的解集为{x|≤x≤6}.
法二:原不等式可化为3x2-19x+6≤0
⇒(3x-1)(x-6)≤0⇒(x-)(x-6)≤0.
∴原不等式的解集为{x|≤x≤6}.
(2)原不等式可化为x+1-≥0⇒≥0
⇒≥0⇒
如图所示,原不等式的解集为{x|-2≤x<0,或x≥1}.
9.若不等式a<2x-x2对于任意的x∈[-2,3]恒成立,则实数a的取值范围为________.
解析:由已知不等式a<-x2+2x对任意x∈[-2,3]恒成立,令f(x)=-x2+2x,x∈[-2,3],
可得当x=-2时,f(x)min=f(-2)
=-(x-1)2+1=-8,
∴实数a的取值范围a∈(-∞,-8).
答案:(-∞,-8)
8.当a>0时不等式组的解集为________.
解析:由画数轴讨论便得.
答案:当a>时为∅;当a=时为{};
当0<a<时为[a,1-a]
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com