题目列表(包括答案和解析)
3.过点C(-1,1)和D(1,3),圆心在x轴上的圆的方程是___________________.
2.圆关于A(1,2)对称的圆的方程为 .
1.以两点A(-3,-1)和B(5,5)为直径端点的圆的标准方程是____________________.
21.解:(1)当,是增函数…1分,
且…………2分;
,是减函数…………3分,
且…………4分.
所以,讲课开始10分钟,学生的注意力最集中,能持续10分钟…………5分.
(2)…………7分,
故讲课开始25分钟时,学生的注意力比讲课开始后5分钟更集中…………9分.
(3)当时,…………11分;
当,令…………12分,
则学生注意力在180以上所持续的时间28.57-4=24.57>24…………13分,
所以,经过适当安排,老师可以在学生达到所需要的状态下讲授完这道题…………14分.
20.解: (Ⅰ)∵…………1分.
在上是增函数,在[0,3]上是减函数.
∴ 当x=0时取得极小值.∴. ∴b=0…………5分.
∵方程有三个实根, ∴a≠0…………6分.
∴=0的两根分别为…………8分
又在上是增函数,在[0,3]上是减函数.
∴在时恒成立,在时恒成立…………10分.
由二次函数的性质可知…………13分.
∴. 故实数的取值范围为.…………14分
19.解:(Ⅰ)解法一:易知,所以…………1分,设,
则…………3分
因为,故当,即点为椭圆短轴端点时,有最小值…………5分
当,即点为椭圆长轴端点时,有最大值…………7分
解法二:易知,所以…………1分,设,则
…………3分(以下同解法一)
(Ⅱ)显然直线不满足题设条件…………8分,
可设直线,
联立,消2去,整理得:…………9分
由>0
得:…………12分
18.解法一
(I)直三棱柱ABC-A1B1C1中,CC1⊥平面ABC……1分
底面三边长AC=3,BC=4,AB=5,∴ AC⊥BC,……2分
且BC1在平面ABC内的射影为BC,………….4分
∴ AC⊥BC1;……………….6分
(II)设CB1与C1B的交点为E,连结DE,…………8分
∵ D是AB的中点,E是BC1的中点,…………..10分
∴ DE//AC1,…………..11分
∵ DE平面CDB1,AC1平面CDB1,………………………..13分
∴ AC1//平面CDB1;………………………….14分
解法二:∵直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,
∴AC、BC、C1C两两垂直,……………2分
以C为坐标原点,直线CA、CB、C1C分别为x轴、y轴、z轴,
建立空间直角坐标系,……………3分
则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),
B1(0,4,4),D(,2,0)………
(1)∵=(-3,0,0),………4分
=(0,-4,0),………5分
∴•=0,……………6分
∴AC⊥BC1……………7分
(2)设CB1与C1B的交点为E,则E(0,2,2)……………8分
∵=(-,0,2),……………9分
=(-3,0,4),……………10分
∴,…………………11分
∴DE∥AC1. …………………12分
DE平面CDB1,AC1平面CDB1,………………………..13分
∴ AC1//平面CDB1;…………………………14分.
17.解:由,得……………………1分,
显然……………………2分
所以,……………………3分
因为方程在上有且仅有一解,故……………………5分,
所以……………………7分
只有一个实数满足不等式所以……………………9分
因为命题是假命题,所以命题p和命题q都是假命题……………………10分.
所以的取值范围为……………………12分
16. 解:(1)当时,
………………2分
………………3分
……………………5分
(2)…………7分
……………………9分
……………………10分
故
∴当……………………12分
11. 12.①②③ 13.2n-4或4-2n 14. 15. 700
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com