题目列表(包括答案和解析)
14.在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.
(Ⅰ)求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);
(Ⅱ)设O点在平面D1AP上的射影是H,求证:D1H⊥AP;
(Ⅲ)求点P到平面ABD1的距离.
13. 已知四棱锥P-ABCD,底面ABCD是菱形,平面ABCD,PD=AD,
点E为AB中点,点F为PD中点.
(1)证明平面PED⊥平面PAB;
(2)求二面角P-AB-F的平面角的余弦值
12.在直三棱柱ABC-A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BA、BC的中点,G是AA1上一点,且AC1⊥EG.
(Ⅰ)确定点G的位置;
(Ⅱ)求直线AC1与平面EFG所成角θ的大小.
11.如图,在底面是直角梯形的四棱锥中,AD∥BC,∠ABC=90°,且,又PA⊥平面ABCD,AD=3AB=3PA=3a。
(I)求二面角P-CD-A的正切值;
(II)求点A到平面PBC的距离。
10.如图:已知直三棱柱ABC-A1B1C1,AB=AC,F为棱BB1上一点,BF∶FB1=2∶1,BF=BC=2a。
(I)若D为BC的中点,E为AD上不同于A、D的任意一点,证明EF⊥FC1;
(II)试问:若AB=2a,在线段AD上的E点能否使EF与平面BB1C1C成60°角,为什么?证明你的结论
9. 如图,在正三棱柱ABC-A1B1C1中,各棱长都相等,D、E分别为AC1,BB1的中点。(1)求证:DE∥平面A1B1C1;(2)求二面角A1-DE-B1的大小。
8. 如图4,在长方体
中,AD==1,AB=2,点E在棱AB
上移动。
(Ⅰ)证明:;
(Ⅱ)当E为AB的中点时,求点E到面
的距离;
(Ⅲ)AE等于何值时,二面角的大小为。
7. 如图,正方体ABCD-A1B1C1D1的棱长为1,P、Q分别是线段AD1和BD上的点,且
D1P∶PA=DQ∶QB=5∶12.
(1) 求证PQ∥平面CDD1C1;
(2) 求证PQ⊥AD;
(3) 求线段PQ的长.
6. 如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a, DC=a,F、G分别为EB和AB的中点.
(1)求证:FD∥平面ABC;
(2)求证:AF⊥BD;
(3) 求二面角B-FC-G的正切值.
5. 已知三棱锥P-ABC中,PC⊥底面ABC,AB=BC,
D、F分别为AC、PC的中点,DE⊥AP于E.
(1)求证:AP⊥平面BDE;
(2)求证:平面BDE⊥平面BDF;
(3)若AE∶EP=1∶2,求截面BEF分三棱锥
P-ABC所成两部分的体积比.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com