题目列表(包括答案和解析)
2、函数是幂函数,且在时为减函数, 则实数
1、在函数中,若成等比数列且,则有最 值(填“大”或“小”),且该值为
如图所示,抛物线与x轴交于A、B两点(点A在点B的左边),在第二象限内抛物线上的一点C,使△OCA∽△OBC,且AC:BC=:1,若直线AC交y轴于P。
(1)当C恰为AP中点时,求抛物线和直线AP的解析式;
(2)若点M在抛物线的对称轴上,⊙M与直线PA和y轴都相切,求点M的坐标。
如图所示,已知BC是半圆O的直径,△ABC内接于⊙O,以A为圆心,AB为半径作弧交⊙O于F,交BC于G,交OF于H,AD⊥BC于D,AD、BF交于E,CM切⊙O于C,交BF的延长线于M,若FH=6,,求FM的长。
已知关于x的方程 ①的两实根的乘积等于1。
(1)求证:关于x的方程 方程②有实数根;
(2)当方程②的两根的平方和等于两根积的2倍时,它的两个根恰为△ABC的两边长,若△ABC的三边都是整数,试判断它的形状。
2. 如图所示,⊙O中,弦AC、BD交于E,。
(1)求证:;
(2)延长EB到F,使EF=CF,试判断CF与⊙O的位置关系,并说明理由。
1. 某水果批发市场规定,批发苹果不少于100千克,批发价为每千克2.5元,学校采购员带现金2000元,到该批发市场采购苹果,以批发价买进,如果采购的苹果为x(千克),付款后剩余现金为y(元)。
(1)写出y与x间的函数关系式,并写出自变量x的取值范围,画出函数图象;
(2)若采购员至少留出500元去采购其他物品,则它最多能购买苹果多少千克?
2. 已知:如图所示,Rt△ABC中,∠C=90°,∠ABC=60°,DC=11,D点到AB的距离为2,求BD的长。
1. 已知:如图所示,正方形ABCD,E为CD上一点,过B点作BF⊥BE于B,求证:∠1=∠2。
3. 先化简再求值:。(其中)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com