题目列表(包括答案和解析)
18. (本小题满分14分)如图所示,四棱锥P-ABCD中,AB⊥AD,AD⊥DC,PA⊥底面ABCD,PA=AD=DC=AB=1,M为PC的中点,N点在AB上且AN=NB.
(1)证明:MN∥平面PAD;
(2)求直线MN与平面PCB所成的角.
解:(1)证明:过M作ME∥CD交PD于E,
连接AE.
∵AN=NB,
∴AN=AB=DC=EM.
又EM∥DC∥AB,∴EMAN,
∴AEMN为平行四边形,
∴MN∥AE,又AE⊂平面PAD,MN⊄平面PAD,
∴MN∥平面PAD.
(2)过N点作NQ∥AP交BP于点Q,NF⊥CB交CB于点F,
连接QF,过N点作NH⊥QF交QF于H,连接MH.
易知QN⊥平面ABCD,∴QN⊥BC,而NF⊥BC,
∴BC⊥平面QNF,
∴BC⊥NH,而NH⊥QF,∴NH⊥平面PBC,
∴∠NMH为直线MN与平面PCB所成的角.
通过计算可得MN=AE=,QN=,NF=,
∴NH===,
∴sin∠NMH==,∴∠NMH=60°.
∴直线MN与平面PCB所成的角为60°.
17.(本小题满分14分)(2010·徐州模拟)如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是AB、PD的中点.
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD;
(3)求四面体PEFC的体积.
解:(1)证明:设G为PC的中点,连结FG,EG,
∵F为PD的中点,E为AB的中点,
∴FG CD,AECD
∴FG AE,∴AF∥GE
∵GE⊂平面PEC,
∴AF∥平面PCE;
(2)证明:∵PA=AD=2,∴AF⊥PD
又∵PA⊥平面ABCD,CD⊂平面ABCD,
∴PA⊥CD,∵AD⊥CD,PA∩AD=A,
∴CD⊥平面PAD,
∵AF⊂平面PAD,∴AF⊥CD.
∵PD∩CD=D,∴AF⊥平面PCD,
∴GE⊥平面PCD,
∵GE⊂平面PEC,
∴平面PCE⊥平面PCD;
(3)由(2)知,GE⊥平面PCD,
所以EG为四面体PEFC的高,
又GF∥CD,所以GF⊥PD,
EG=AF=,GF=CD=,
S△PCF=PD·GF=2.
得四面体PEFC的体积V=S△PCF·EG=.
16.(本小题满分12分)已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使DE⊥EC.
(1)求证:BC⊥平面CDE;
(2)求证:FG∥平面BCD;
(3)求四棱锥D-ABCE的体积.
解:(1)证明:由已知得:
DE⊥AE,DE⊥EC,∴DE⊥平面ABCE.
∴DE⊥BC.又BC⊥CE,CE∩DE=E,
∴BC⊥平面DCE.
(2)证明:取AB中点H,连结GH,FH,
∴GH∥BD,FH∥BC,
∴GH∥平面BCD,FH∥平面BCD.
又GH∩FH=H,
∴平面FHG∥平面BCD,
∴FG∥平面BCD(由线线平行证明亦可).
(3)V=×1×2×=.
骤)
15.(本小题满分12分)(2010·泉州模拟)如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示).
(1)求四棱锥P-ABCD的体积;
(2)证明:BD∥平面PEC;
(3)若G为BC上的动点,求证:AE⊥PG.
解:(1)由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=4,BE=2,AB=AD=CD=CB=4,
∴VP-ABCD=PA×SABCD=×4×4×4=.
(2)证明:连结AC交BD于O点,
取PC中点F,连结OF,
∵EB∥PA,且EB=PA,
又OF∥PA,且OF=PA,
∴EB∥OF,且EB=OF,
∴四边形EBOF为平行四边形,
∴EF∥BD.
又EF⊂平面PEC,BD⊄平面PEC,所以BD∥平面PEC.
(3)连结BP,∵==,∠EBA=∠BAP=90°,
∴△EBA∽△BAP,∴∠PBA=∠BEA,
∴∠PBA+∠BAE=∠BEA+∠BAE=90°,
∴PB⊥AE.
又∵BC⊥平面APEB,∴BC⊥AE,
∴AE⊥平面PBG,∴AE⊥PG.
14.(2009·江南测试)棱长为a的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E、F分别是棱AA1、DD1的中点,则直线EF被球O截得的线段长为________.
解析:因为正方体内接于球,所以2R=,R=,
过球心O和点E、F的大圆的截面图如图所示,
则直线被球截得的线段为QR,过点O作OP⊥QR
于点P,所以,在△QPO中,QR=2QP=2
答案:
13.如图,在正方体ABCD-A1B1C1D1中,P为棱DC的中点,则D1P与BC1所在直线所成角的余弦值等于________.
解析:过C1作D1P的平行线交DC的延长线于点F,连结BF,则∠BC1F或其补角等于异面直线D1P与BC1所成的角.设正方体的棱长为1,由P为棱DC的中点,则易得BC1=,
C1F= =,
BF= =.
在△BC1F中,cos∠BC1F=
=.
答案:
12.(2010·皖中模拟)已知三棱锥的三个侧面两两垂直,三条侧棱长分别为4、4、7,若此三棱锥的各个顶点都在同一个球面上,则此球的表面积是________.
解析:补成长方体易求4R2=81,
∴S=4πR2=81π.
答案:81π
11.母线长为1的圆锥的侧面展开图的圆心角等于π,则该圆锥的体积为________.
解析:圆锥的侧面展开图扇形的弧长,即底面圆的周长为π·1=π,于是设底面圆的半径为r,
则有2πr=π,所以r=,
于是圆锥的高为h==,
故圆锥的体积为V=π.
答案:π
10.如图,AD⊥平面BCD,∠BCD=90°,AD=BC=CD=a,则二面角C-AB-D的大小为__________.
解析:取BD的中点E,连结CE,则CE⊥面ABD,作EF⊥AB,
∴CF⊥AB得∠CFE为所求.
又CE=a,CF=,
∴sin∠CFE=
答案:60°
9.(2009·辽宁高考)设某几何体的三视图如下(尺寸的长度单位为m).
则该几何体的体积为 m3.
解析:由三视图可知原几何体是一个三棱锥,且三棱锥的高为2,底面三角形的一边长为4,且该边上的高为3,
故所求三棱锥的体积为V=×2××3×4=4 m3,
答案:4
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com