题目列表(包括答案和解析)
3.(2009年高考山东卷改编)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则f(-25)、f(11)、f(80)的大小关系为________.
解析:因为f(x)满足f(x-4)=-f(x),所以f(x-8)=f(x),所以函数是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3),又因为f(x)在R上是奇函数,f(0)=0,得f(80)=f(0)=0,f(-25)=f(-1)=-f(1),而由f(x-4)=-f(x)得f(11)=f(3)=-f(-3)=-f(1-4)=f(1),又因为f(x)在区间[0,2]上是增函数,所以f(1)>f(0)=0,所以-f(1)<0,即f(-25)<f(80)<f(11).
答案:f(-25)<f(80)<f(11)
2.(2010年广东三校模拟)定义在R上的函数f(x)既是奇函数又是以2为周期的周期函数,则f(1)+f(4)+f(7)等于________.
解析:f(x)为奇函数,且x∈R,所以f(0)=0,由周期为2可知,f(4)=0,f(7)=f(1),又由f(x+2)=f(x),令x=-1得f(1)=f(-1)=-f(1)⇒f(1)=0,所以f(1)+f(4)+f(7)=0.答案:0
1.设偶函数f(x)=loga|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系为________.
解析:由f(x)为偶函数,知b=0,∴f(x)=loga|x|,又f(x)在(-∞,0)上单调递增,所以0<a<1,1<a+1<2,则f(x)在(0,+∞)上单调递减,所以f(a+1)>f(b+2).答案:f(a+1)>f(b+2)
12.已知集合A={x∈R|ax2-3x+2=0}.
(1)若A=∅,求实数a的取值范围;
(2)若A是单元素集,求a的值及集合A;
(3)求集合M={a∈R|A≠∅}.
解:(1)A是空集,即方程ax2-3x+2=0无解.
若a=0,方程有一解x=,不合题意.
若a≠0,要方程ax2-3x+2=0无解,则Δ=9-8a<0,则a>.
综上可知,若A=∅,则a的取值范围应为a>.
(2)当a=0时,方程ax2-3x+2=0只有一根x=,A={}符合题意.
当a≠0时,则Δ=9-8a=0,即a=时,
方程有两个相等的实数根x=,则A={}.
综上可知,当a=0时,A={};当a=时,A={}.
(3)当a=0时,A={}≠∅.当a≠0时,要使方程有实数根,
则Δ=9-8a≥0,即a≤.
综上可知,a的取值范围是a≤,即M={a∈R|A≠∅}={a|a≤}
11.已知函数f(x)= 的定义域为集合A,函数g(x)=lg(-x2+2x+m)的定义域为集合B.
(1)当m=3时,求A∩(∁RB);
(2)若A∩B={x|-1<x<4},求实数m的值.
解:A={x|-1<x≤5}.
(1)当m=3时,B={x|-1<x<3},则∁RB={x|x≤-1或x≥3},
∴A∩(∁RB)={x|3≤x≤5}.
(2)∵A={x|-1<x≤5},A∩B={x|-1<x<4},
∴有-42+2×4+m=0,解得m=8,此时B={x|-2<x<4},符合题意.
10.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围.
解:由x2-3x+2=0得x=1或x=2,故集合A={1,2}.
(1)∵A∩B={2},∴2∈B,代入B中的方程,得a2+4a+3=0⇒a=-1或a=-3;当a=-1时,B={x|x2-4=0}={-2,2},满足条件;当a=-3时,B={x|x2-4x+4=0}={2},满足条件;综上,a的值为-1或-3.
(2)对于集合B,Δ=4(a+1)2-4(a2-5)=8(a+3).∵A∪B=A,∴B⊆A,
①当Δ<0,即a<-3时,B=∅满足条件;②当Δ=0,即a=-3时,B={2}满足条件;③当Δ>0,即a>-3时,B=A={1,2}才能满足条件,则由根与系数的关系得
⇒矛盾.综上,a的取值范围是a≤-3.
9.设全集I={2,3,a2+2a-3},A={2,|a+1|},∁IA={5},M={x|x=log2|a|},则集合M的所有子集是________.
解析:∵A∪(∁IA)=I,∴{2,3,a2+2a-3}={2,5,|a+1|},∴|a+1|=3,且a2+2a-3=5,解得a=-4或a=2,∴M={log22,log2|-4|}={1,2}.
答案:∅,{1},{2},{1,2}
8.若集合{(x,y)|x+y-2=0且x-2y+4=0}?{(x,y)|y=3x+b},则b=________.
解析:由⇒点(0,2)在y=3x+b上,∴b=2.
7.定义A⊗B={z|z=xy+,x∈A,y∈B}.设集合A={0,2},B={1,2},C={1},则集合(A⊗B)⊗C的所有元素之和为________.
解析:由题意可求(A⊗B)中所含的元素有0,4,5,则(A⊗B)⊗C中所含的元素有0,8,10,故所有元素之和为18.答案:18
6.(2009年高考重庆卷)设U={n|n是小于9的正整数},A={n∈U|n是奇数},B={n∈U|n是3的倍数},则∁U(A∪B)=________.
解析:U={1,2,3,4,5,6,7,8},A={1,3,5,7},B={3,6},∴A∪B={1,3,5,6,7},
得∁U(A∪B)={2,4,8}.答案:{2,4,8}
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com