题目列表(包括答案和解析)
7.(2010年安徽黄山质检)定义在R上的函数f(x)在(-∞,a]上是增函数,函数y=f(x+a)是偶函数,当x1<a,x2>a,且|x1-a|<|x2-a|时,则f(2a-x1)与f(x2)的大小关系为________.
解析:∵y=f(x+a)为偶函数,∴y=f(x+a)的图象关于y轴对称,∴y=f(x)的图象关于x=a对称.又∵f(x)在(-∞,a]上是增函数,∴f(x)在[a,+∞)上是减函数.当x1<a,x2>a,且|x1-a|<|x2-a|时,有a-x1<x2-a,即a<2a-x1<x2,∴f(2a-x1)>f(x2).答案:f(2a-x1)>f(x2)
6.(2010年江苏苏州模拟)已知函数f(x)是偶函数,并且对于定义域内任意的x,满足f(x+2)=-,若当2<x<3时,f(x)=x,则f(2009.5)=________.
解析:由f(x+2)=-,可得f(x+4)=f(x),f(2009.5)=f(502×4+1.5)=f(1.5)=f(-2.5)∵f(x)是偶函数,∴f(2009.5)=f(2.5)=.答案:
5.(2009年高考江西卷改编)已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2009)+f(2010)的值为________.
解析:∵f(x)是偶函数,∴f(-2009)=f(2009).∵f(x)在x≥0时f(x+2)=f(x),∴f(x)周期为2.∴f(-2009)+f(2010)=f(2009)+f(2010)=f(1)+f(0)=log22+log21=0+1=1.答案:1
4.(2010年湖南郴州质检)已知函数f(x)是R上的偶函数,且在(0,+∞)上有f′(x)>0,若f(-1)=0,那么关于x的不等式xf(x)<0的解集是________.
解析:在(0,+∞)上有f′(x)>0,则在(0,+∞)上f(x)是增函数,在(-∞,0)上是减函数,又f(x)在R上是偶函数,且f(-1)=0,∴f(1)=0.从而可知x∈(-∞,-1)时,f(x)>0;x∈(-1,0)时,f(x)<0;x∈(0,1)时,f(x)<0;x∈(1,+∞)时,f(x)>0.∴不等式的解集为(-∞,-1)∪(0,1)答案:(-∞,-1)∪(0,1).
3.(2010年浙江台州模拟)已知f(x)是定义在R上的奇函数,且f(1)=1,若将f(x)的图象向右平移一个单位后,得到一个偶函数的图象,则f(1)+f(2)+f(3)+…+f(2010)=________.
解析:f(x)是定义在R上的奇函数,所以f(-x)=-f(x),将f(x)的图象向右平移一个单位后,得到一个偶函数的图象,则满足f(-2+x)=-f(x),即f(x+2)=-f(x),所以周期为4,f(1)=1,f(2)=f(0)=0,f(3)=-f(1)=-1,f(4)=0,所以f(1)+f(2)+f(3)+f(4)=0,则f(1)+f(2)+f(3)+…+f(2010)=f(4)×502+f(2)=0.答案:0
2.已知定义在R上的函数f(x)满足f(x)=-f(x+),且f(-2)=f(-1)=-1,f(0)=2,f(1)+f(2)+…+f(2009)+f(2010)=________.
解析:f(x)=-f(x+)⇒f(x+3)=f(x),即周期为3,由f(-2)=f(-1)=-1,f(0)=2,所以f(1)=-1,f(2)=-1,f(3)=2,所以f(1)+f(2)+…+f(2009)+f(2010)=f(2008)+f(2009)+f(2010)=f(1)+f(2)+f(3)=0.答案:0
1.(2009年高考全国卷Ⅰ改编)函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则下列结论正确的是________.
①f(x)是偶函数 ②f(x)是奇函数 ③f(x)=f(x+2)
④f(x+3)是奇函数
解析:∵f(x+1)与f(x-1)都是奇函数,∴f(-x+1)=-f(x+1),f(-x-1)=-f(x-1),∴函数f(x)关于点(1,0),及点(-1,0)对称,函数f(x)是周期T=2[1-(-1)]=4的周期函数.∴f(-x-1+4)=-f(x-1+4),f(-x+3)=-f(x+3),即f(x+3)是奇函数.答案:④
6.已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数,又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.(1)证明:f(1)+f(4)=0;(2)求y=f(x),x∈[1,4]的解析式;(3)求y=f(x)在[4,9]上的解析式.
解:(1)证明:∵f(x)是以5为周期的周期函数,∴f(4)=f(4-5)=f(-1),
又∵y=f(x)(-1≤x≤1)是奇函数,∴f(1)=-f(-1)=-f(4),∴f(1)+f(4)=0.
(2)当x∈[1,4]时,由题意可设f(x)=a(x-2)2-5(a>0),由f(1)+f(4)=0,得a(1-2)2-5+a(4-2)2-5=0,∴a=2,∴f(x)=2(x-2)2-5(1≤x≤4).
(3)∵y=f(x)(-1≤x≤1)是奇函数,∴f(0)=0,又知y=f(x)在[0,1]上是一次函数,∴可设f(x)=kx(0≤x≤1),而f(1)=2(1-2)2-5=-3,∴k=-3,∴当0≤x≤1时,f(x)=-3x,从而当-1≤x<0时,f(x)=-f(-x)=-3x,故-1≤x≤1时,f(x)=-3x.∴当4≤x≤6时,有-1≤x-5≤1,∴f(x)=f(x-5)=-3(x-5)=-3x+15.当6<x≤9时,1<x-5≤4,∴f(x)=f(x-5)=2[(x-5)-2]2-5=2(x-7)2-5.
∴f(x)=.
B组
5.(原创题)已知定义在R上的函数f(x)是偶函数,对x∈R,f(2+x)=f(2-x),当f(-3)=-2时,f(2011)的值为________.
解析:因为定义在R上的函数f(x)是偶函数,所以f(2+x)=f(2-x)=f(x-2),故函数f(x)是以4为周期的函数,所以f(2011)=f(3+502×4)=f(3)=f(-3)=-2.答案:-2
4.(2009年高考辽宁卷改编)已知偶函数f(x)在区间[0,+∞)上单调增加,则满足f(2x-1)<f()的x取值范围是________.
解析:由于f(x)是偶函数,故f(x)=f(|x|),由f(|2x-1|)<f(),再根据f(x)的单调性得|2x-1|<,解得<x<.答案:(,)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com