题目列表(包括答案和解析)
1.(2010年广东江门质检)函数y=+lg(2x-1)的定义域是________.
解析:由3x-2>0,2x-1>0,得x>.答案:{x|x>}
6.已知函数f(x)=(1)求f(1-),f{f[f(-2)]}的值;(2)求f(3x-1);(3)若f(a)=, 求a.
解:f(x)为分段函数,应分段求解.
(1)∵1-=1-(+1)=-<-1,∴f(-)=-2+3,
又∵f(-2)=-1,f[f(-2)]=f(-1)=2,∴f{f[f(-2)]}=1+=.
(2)若3x-1>1,即x>,f(3x-1)=1+=;
若-1≤3x-1≤1,即0≤x≤,f(3x-1)=(3x-1)2+1=9x2-6x+2;
若3x-1<-1,即x<0,f(3x-1)=2(3x-1)+3=6x+1.
∴f(3x-1)=
(3)∵f(a)=,∴a>1或-1≤a≤1.
当a>1时,有1+=,∴a=2;
当-1≤a≤1时,a2+1=,∴a=±.
∴a=2或±.
B组
5.(原创题)由等式x3+a1x2+a2x+a3=(x+1)3+b1(x+1)2+b2(x+1)+b3定义一个映射f(a1,a2,a3)=(b1,b2,b3),则f(2,1,-1)=________.
解析:由题意知x3+2x2+x-1=(x+1)3+b1(x+1)2+b2(x+1)+b3,
令x=-1得:-1=b3;
再令x=0与x=1得,
解得b1=-1,b2=0.
答案:(-1,0,-1)
4.(2010年黄冈市高三质检)函数f:{1,}→{1,}满足f[f(x)]>1的这样的函数个数有________个.
解析:如图.答案:1
3.(2009年高考北京卷)已知函数f(x)=若f(x)=2,则x=________.
解析:依题意得x≤1时,3x=2,∴x=log32;
当x>1时,-x=2,x=-2(舍去).故x=log32.答案:log32
2.(2010年绍兴第一次质检)如图,函数f(x)的图象是曲线段OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f()的值等于________.
解析:由图象知f(3)=1,f()=f(1)=2.答案:2
1.(2009年高考江西卷改编)函数y=的定义域为________.
解析:⇒x∈[-4,0)∪(0,1]
答案:[-4,0)∪(0,1]
12.已知:f(x)=log3,x∈(0,+∞),是否存在实数a,b,使f(x)同时满足下列三个条件:(1)在(0,1]上是减函数,(2)在[1,+∞)上是增函数,(3)f(x)的最小值是1.若存在,求出a、b;若不存在,说明理由.
解:∵f(x)在(0,1]上是减函数,[1,+∞)上是增函数,∴x=1时,f(x)最小,log3=1.即a+b=2.
设0<x1<x2≤1,则f(x1)>f(x2).即>恒成立.
由此得>0恒成立.
又∵x1-x2<0,x1x2>0,∴x1x2-b<0恒成立,∴b≥1.
设1≤x3<x4,则f(x3)<f(x4)恒成立.∴<0恒成立.
∵x3-x4<0,x3x4>0,∴x3x4>b恒成立.∴b≤1.由b≥1且b≤1可知b=1,∴a=1.∴存在a、b,使f(x)同时满足三个条件.
|
|
11.(2010年广西河池模拟)已知定义在区间(0,+∞)上的函数f(x)满足f()=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2.
解:(1)令x1=x2>0,代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.
(2)任取x1,x2∈(0,+∞),且x1>x2,则>1,由于当x>1时,f(x)<0,
所以f()<0,即f(x1)-f(x2)<0,因此f(x1)<f(x2),
所以函数f(x)在区间(0,+∞)上是单调递减函数.
(3)由f()=f(x1)-f(x2)得f()=f(9)-f(3),而f(3)=-1,所以f(9)=-2.
由于函数f(x)在区间(0,+∞)上是单调递减函数,
由f(|x|)<f(9),得|x|>9,∴x>9或x<-9.因此不等式的解集为{x|x>9或x<-9}.
10.试讨论函数y=2(logx)2-2logx+1的单调性.
解:易知函数的定义域为(0,+∞).如果令u=g(x)=logx,y=f(u)=2u2-2u+1,那么原函数y=f[g(x)]是由g(x)与f(u)复合而成的复合函数,而u=logx在x∈(0,+∞)内是减函数,y=2u2-2u+1=2(u-)2+在u∈(-∞,)上是减函数,在u∈(,+∞)上是增函数.又u≤,即logx≤,得x≥;u>,得0<x<.由此,从下表讨论复合函数y=f[g(x)]的单调性:
函数 |
单调性 |
|
(0,) |
(,+∞) |
|
u=logx |
|
|
f(u)=2u2-2u+1 |
? |
? |
y=2(logx)2-2logx+1 |
? |
? |
故函数y=2(logx)2-2logx+1在区间(0,)上单调递减,在区间(,+∞)上单调递增.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com