题目列表(包括答案和解析)
5.f(x)是定义在R上的以3为周期的偶函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是 ( )
A.5 B.4 C.3 D.2
解析:∵f(x)是定义在R上的偶函数,且周期是3,f(2)=0,∴f(2)=f(5)=f(-2)=f(1)=f(4)=0.
答案:B
4.(2009·福建高考)若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则f(x)可以是 ( )
A.f(x)=4x-1 B.f(x)=(x-1)2
C.f(x)=ex-1 D.f(x)=ln(x-)
解析:∵4个选项中的零点是确定的.
A:x=;B:x=1;C:x=0;D:x=.
又∵g(0)=40+2×0-2=-1<0,
g()=+2×-2=1>0,
∴g(x)=4x+2x-2的零点介于(0,)之间.从而选A.
答案:A
3.(2010·苏北三市联考)若方程lnx+2x-10=0的解为x0,则不小于x0的小整数是 .
解析:令f(x)=lnx+2x-10,
则f(5)=ln5>0,f(4)=ln4-2<0
∴4<x0<5
∴不小于x0的最小整数是5.
答案:5
题组二 |
函数零点的求法 |
2.设f(x)=3x-x2,则在下列区间中,使函数f(x)有零点的区间是 ( )
A. B.
C. D.
解析:∵f(-1)=3-1-(-1)2=-1=-<0,
f(0)=30-0=1>0,
∴函数f(x)=3x-x2在区间内存在零点.
答案:D
1.若函数f(x)在区间上的图象是连续不断的曲线,且函数f(x)在(-2,2)内有一个零点,则f(-2)·f(2)的值 ( )
A.大于0 B.小于0 C.等于0 D.不能确定
解析:若函数f(x)在(-2,2)内有一个零点,则该零点是变号零点,则f(-2)f(2)<0.若不是变号零点,则f(-2)f(2)>0.
答案:D
11.已知函数f (x)=,x∈上是减函数,在(2,+∞)上是增函数.
∴f(x)min=f(2)=6.
(2)当a=时,f(x)=x++2.
易知,f(x)在上是减函数,在[,+∞)上是增函数.
若>1,即a>1时,f(x)在区间≤1=f(4),
∴⇒3<x≤4.
∴原不等式的解集为{x|3<x≤4}.
10.已知函数f(x)=x2-2ax+a,在区间(-∞,1)上有最小值,则函数g(x)=在区间(1,+∞)上一定 ( )
A.有最小值 B.有最大值 C.是减函数 D.是增函数
解析:由题意a<1,又函数g(x)=x+-2a在[,+∞)上为增函数,故选D.
答案:D
7.已知f (x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a=f (log47),b=f (log3),c=f (0.20.6),则a,b,c的大小关系是 ( )
A.c<b<a B.b<c<a C.c>a>b D.a<b<c
解析:由题意f (x)=f (|x|).
∵log47=log2>1,|log3|=log23>1,0<0.20.6<1,
∴|log3|>|log47|>|0.20.6|.
又∵f(x)在(-∞,0]上是增函数且为偶函数,
∴f(x)在上是增函数,f(-1)=-1.若函数f(x)≤t2-2at+1对所有的x∈都成立,则当a∈时,t的取值范围是 .
解析:若函数f(x)≤t2-2at+1对所有的x∈都成立,由已知易得f(x)的最大值是1,
∴1≤t2-2at+1⇔2at-t2≤0,
设g(a)=2at-t2(-1≤a≤1),欲使2at-t2≤0恒成立,
则⇔t≥2或t=0或t≤-2.
答案:t≤-2或t=0或t≥2
题组四 |
函数单调性的综合应用 |
6.已知函数f (x)= (a≠1).
(1)若a>0,则f (x)的定义域是 ;
(2)若f (x)在区间(0,1]上是减函数,则实数a的取值范围是 .
解析:当a>0且a≠1时,由3-ax≥0得x≤,即此时函数f(x)的定义域是(-∞,];
(2)当a-1>0,即a>1时,要使f(x)在(0,1]上是减函数,则需3-a×1≥0,此时1<a≤3.
当a-1<0,即a<1时,要使f(x)在(0,1]上是减函数,则需-a>0,
此时a<0.
综上所述,所求实数a的取值范围是(-∞,0)∪(1,3].
答案:(1)(-∞,] (2)(-∞,0)∪(1,3]
题组三 |
抽象函数的单调性及最值 |
5.(2010·黄冈模拟)已知函数f(x)= (2x2+x),则f (x)的单调递增区间为 ( )
A.(-∞,-) B.(-,+∞) C.(0,+∞) D.(-∞,-)
解析:由2 x 2+x>0,得x>0或x<-,
令h(x)=2 x 2+x,则h(x)的单调减区间为(-∞,-).
又∵x <-,
∴f (x)的单调递增区间为(-∞,-).
答案:D
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com