题目列表(包括答案和解析)
6.(2010·包头模拟)已知下列曲线:
以及编号为①②③④的四个方程:
①-=0;②|x|-|y|=0;③x-|y|=0;④|x|-y=0.
请按曲线A、B、C、D的顺序,依次写出与之对应的方程的编号 .
解析:按图象逐个分析,注意x、y的取值范围.
答案:④②①③
5.函数f(x)=·ax(a>1)图象的大致形状是 ( )
解析:f(x)是分段函数,根据x的正负写出分段函数的解析式,f(x)=,∴x>0时,图象与y=ax在第一象限的图象一样,x<0时,图象与y=ax的图象关于x轴对称,故选B.
答案:B
4.函数y=1-的图象是 ( )
解析:法一:将函数y=的图象变形到y=,即向右平移1个单位,再变形到y=-,即将前面图形沿x轴翻转,再变形到y=-+1,从而得到答案B.
法二:利用特殊值法,取x1=0,此时y1=2;取x2=2,此时y2=0.因此选B.
答案:B
3.作出下列函数的图象:
(1)y=|x-2|·(x+1);
(2)y=()|x|;
(3)y=|log2(x+1)|.
解:(1)先化简,再作图.
y=如图(1).
(2)此函数为偶函数,
利用y=()x(x≥0)的图象进行变换.如图(2).
(3)利用y=log2x的图象进行平移和翻折变换.
如图(3).
题组二 |
识 图 |
2.函数f(x)=1+log2x与g(x)=21-x在同一直角坐标系下的图象大致是 ( )
解析:利用函数的平移可画出所给函数的图象,函数f(x)=1+log2x的图象是由f(x)=log2x的图象向上平移1个单位得到;而g(x)=2-x+1=2-(x-1)的图象是由y=2-x的图象右移1个单位而得.
答案:C
1.为了得到函数y=3×()x的图象,可以把函数y= ()x的图象 ( )
A.向左平移3个单位长度
B.向右平移3个单位长度
C.向左平移1个单位长度
D.向右平移1个单位长度
解析:∵y=3×()x=()x-1,
∴y=3×()x的图象可以把函数y=()x的图象向右平移1个单位.
答案:D
9.定义在R上的偶函数f(x),对任意x1,x2∈ 上是增函数.若方程f(x)=m(m>0)在区间上有四个不同的根x1,x2,x3,x4, 则x1+x2+x3+x4= .
解析:由f(x-4)=-f(x)⇒f(4-x)=f(x),
故函数图象关于直线x=2对称,
又函数f(x)在上是增函数,且为奇函数,
故f(0)=0,故函数f(x)在(0,2]上大于0,
根据对称性知函数f(x)在上单调递增,求实数a的取值范围.
解:(1)设x<0,则-x>0,
所以f(-x)=-(-x)2+2(-x)=-x2-2x.
又f(x)为奇函数,所以f(-x)=-f(x),
于是x<0时,f(x)=x2+2x=x2+mx,
所以m=2.
(2)要使f(x)在上单调递增,
结合f(x)的图象知
所以1<a≤3,故实数a的取值范围是(1,3].
(理)已知定义域为R的函数f(x)=是奇函数.
(1)求a、b的值;
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
解:(1)因为f(x)是R上的奇函数,所以f(0)=0,
即=0,解得b=1,从而有f(x)=.
又由f(1)=-f(-1),知=-,解得a=2.
故a=2,b=1.
(2)由(1)知f(x)==-+.
由上式易知f(x)在(-∞,+∞)上为减函数.
又因f(x)是奇函数,
从而不等式f(t2-2t)+f(2t2-k)<0
等价于f(t2-2t)<-f(2t2-k)=f(-2t2+k).
因f(x)是减函数,由上式推得t2-2t>-2t2+k,
即对一切t∈R有3t2-2t-k>0.
从而判别式Δ=4+12k<0,解得k<-.
8.(2010·滨州模拟)定义在R上的奇函数f(x)满足:当x>0时,f(x)=2008x+log2008x,则方程f(x)=0的实根的个数为 .
解析:当x>0时,f(x)=0即2008x=-log2008x,在同一坐标系下分别画出函数f1(x)=2008x,f2(x)=-log2008x的图象(图略),可知两个图象只有一个交点,即方程f(x)=0只有一个实根,又因为f(x)是定义在R上的奇函数,所以当x<0时,方程f(x)=0也有一个实根,又因为f(0)=0,所以方程f(x)=0的实根的个数为3.
答案:3
题组三 |
函数的奇偶性与单调性的综合问题 |
7.已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,在(0,+∞)上单调递减,且f()>0>f(-),则方程f(x)=0的根的个数为 ( )
A.0 B.1 C.2 D.3
解析:由于函数是偶函数,且在(0,+∞)上单调递减,因此在(-∞,0)上单调递增,又因为f()>0>f(-)=f(),所以函数f(x)在(,)上与x轴有一个交点,必在(-,-)上也有一个交点,故方程f(x)=0的根的个数为2.
答案:C
6.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)= ( )
A.0 B.1 C. D.5
解析:由f(1)=,
对f(x+2)=f(x)+f(2),
令x=-1,
得f(1)=f(-1)+f(2).
又∵f(x) 为奇函数,∴f(-1)=-f(1).
于是f(2)=2f(1)=1;
令x=1,得f(3)=f(1)+f(2)=,
于是f(5)=f(3)+f(2)=.
答案:C
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com