题目列表(包括答案和解析)
2.(2010年广东广州质检)下列图象中,表示y=x的是________.
解析:y=x=是偶函数,∴排除②、③,当x>1时,=x>1,∴x>x,∴排除①.答案:④
1.若a>1且0<b<1,则不等式alogb(x-3)>1的解集为________.
解析:∵a>1,0<b<1,∴alogb(x-3)>1⇔logb(x-3)>0⇔logb(x-3)>logb1⇔0<x-3<1⇔3<x<4.答案:{x|3<x<4}
12.设函数f(x)=(x∈R,且a≠0,x≠).(1)若a=,b=-,指出f(x)与g(x)=的图象变换关系以及函数f(x)的图象的对称中心;(2)证明:若ab+1≠0,则f(x)的图象必关于直线y=x对称.
解:(1)a=,b=-,f(x)===2+,
∴f(x)的图象可由g(x)的图象沿x轴右移2个单位,再沿y轴上移2个单位得到,f(x)的图象的对称中心为点(2,2).
(2)证明:设P(x0,y0)为f(x)图象上任一点,则y0=,P(x0,y0)关于y=x的对称点为P′(y0,x0).由y0=得x0=.∴P′(y0,x0)也在f(x)的图象上.故f(x)的图象关于直线y=x对称.
11.已知函数f(x)=-(a>0且a≠1).(1)证明:函数y=f(x)的图象关于点(,-)对称;(2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值.
解:(1)证明:函数f(x)的定义域为R,任取一点(x,y),它关于点(,-)对称的点的坐标为(1-x,-1-y).由已知,y=-,则-1-y=-1+=-.,f(1-x)=-=-=-=-.
∴-1-y=f(1-x).即函数y=f(x)的图象关于点(,-)对称.
(2)由(1)有-1-f(x)=f(1-x).即f(x)+f(1-x)=-1.
∴f(-2)+f(3)=-1,f(-1)+f(2)=-1,f(0)+f(1)=-1.
则f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=-3.
10.作下列函数的图象:
(1)y=;(2)y=|x-2|(x+1);(3)y=;(4)y=|log2x-1|;(5)y=2|x-1|.
解:(1)定义域{x|x∈R且x≠±1},且函数是偶函数.又当x≥0且x≠1时,y=.先作函数y=的图象,并将图象向右平移1个单位,得到函数y=(x≥0且x≠1)的图象(如图(a)所示).
又函数是偶函数,作关于y轴对称图象,得y=的图象(如图(b)所示).
(2)函数式可化为y=其图象如图①所示.
(3)函数式化为y=其图象如图②所示.
(4)先作出y=log2x的图象,再将其图象向下平移1个单位长度,保留x轴上方的部分,将x轴下方的图象翻折到x轴上方,即得y=|log2x-1|的图象,如图③所示.
(5)先作出y=2x的图象,再将其图象在y轴左边的部分去掉,并作出y轴右边的图象关于y轴对称的图象,即得y=2|x|的图象,再将y=2|x|的图象向右平移1个单位长度,即得y=2|x-1|的图象,如图④所示.
9.(2010年安徽合肥模拟)已知函数图象C′与C:y(x+a+1)=ax+a2+1关于直线y=x对称,且图象C′关于点(2,-3)对称,则a的值为__________.
解析:∵C′与C:y(x+a+1)=ax+a2+1关于直线y=x对称,
∴C′为x(y+a+1)=ay+a2+1.整理得,y+1+a=.
∵C′关于点(2,-3)对称,∴a=2.答案:2
8.(2009年高考福建卷改编)定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是
①y=x2+1
②y=|x|+1
③y=
④y=
解析:∵f(x)为偶函数,由图象知,f(x)在(-2,0)上为减函数,而y=x3+1在(-∞,0)上为增函数.答案:③
7.函数y=x(m,n∈Z,m≠0,|m|,|n|互质)图象如图所示,则下列结论正确的是__________.
①mn>0,m,n均为奇数
②mn<0,m,n一奇一偶
③mn<0,m,n均为奇数
④mn>0,m,n一奇一偶
解析:由于幂函数在第一象限的图象趋势表明函数在(0,+∞)上单调递减,此时只需保证<0,即mn<0,有y=x=x-;同时函数只在第一象限有图象,则函数的定义域为(0,+∞),此时|n|定为偶数,n即为偶数,由于两个数互质,则m定为奇数.答案:②
6.已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈(-1,1]时,f(x)=|x|,则y=f(x)与y=log7x的交点的个数为__________.
解析:由f(x+2)=f(x)知函数y=f(x)为周期为2的周期函数,作图.
答案:6
5.某加油机接到指令,给附近空中一运输机加油.运输机的余油量为Q1(吨),加油机加油箱内余油Q2(吨),加油时间为t分钟,Q1、Q2与时间t的函数关系式的图象如右图.若运输机加完油后以原来的速度飞行需11小时到达目的地,问运输机的油料是否够用?________.
解析:加油时间10分钟,Q1由30减小为0.Q2由40增加到69,因而10分钟时间内运输机用油1吨.以后的11小时需用油66吨.因69>66,故运输机的油料够用.答案:够用
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com