题目列表(包括答案和解析)
4.(2009年高考福建卷改编)设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是________.
①m∥β且l1∥α ②m∥l1且n∥l2 ③m∥β且n∥β ④m∥β且n∥l2
解析:∵m∥l1,且n∥l2,又l1与l2是平面β内的两条相交直线,
∴α∥β,而当α∥β时不一定推出m∥l1且n∥l2,可能异面.答案: ②
3.(2010年苏北四市调研)给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:
①若m⊂α,l∩α=A,点A∉m, 则l与m不共面;
②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
③若l∥α,m∥β,α∥β,则l∥m;
④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β.
其中为真命题的是________.
解析:③中若l⊂β,m⊂α,α∥β⇒l∥m或l,m异面,所以②错误.而其它命题都正确.答案:①②④
2.已知m、n是不同的直线,α、β是不重合的平面,给出下列命题:
①若m∥α,则m平行于平面α内的无数条直线;
②若α∥β,m⊂α,n⊂β,则m∥n;
③若m⊥α,n⊥β,m∥n,则α∥β;
④若α∥β,m⊂α,则m∥β.
其中,真命题的序号是________.(写出所有真命题的序号)
解析:②中α∥β,m⊂α,n⊂β⇒m∥n或m,n异面,所以②错误.而其它命题都正确.答案:①③④
1.已知m、n是两条不同直线,α,β是两个不同平面,下列命题中的真命题是_.
①如果m⊂α,n⊂β,m∥n,那么α∥β
②如果m⊂α,n⊂β,α∥β,那么m∥n
③如果m⊂α,n⊂β,α∥β且m,n共面,那么m∥n
④如果m∥n,m⊥α,n⊥β,那么α⊥β
解析:m⊂α,n⊂β,α∥β⇒m,n没有公共点.又m,n共面,
所以m∥n.答案:③
4.已知函数y=f(x)与y=ex互为反函数,函数y=g(x)的图象与y=f(x)的图象关于x轴对称,若g(a)=1,则实数a的值为________.
解析:由y=f(x)与y=ex互为反函数,得f(x)=lnx,因为y=g(x)的图象与y=f(x)的图象关于x轴对称,故有g(x)=-lnx,g(a)=1⇒lna=-1,所以a=.
3.(2010年枣庄第一次质检)对任意实数a、b,定义运算“*”如下:
a*b=,则函数f(x)=log(3x-2)*log2x的值域为________.
解析:在同一直角坐标系中画出y=log(3x-2)和y=log2x两个函数的图象,
由图象可得
f(x)=,值域为(-∞,0].答案:(-∞,0]
2.(2010年安徽黄山质检)对于函数f(x)=lgx定义域中任意x1,x2(x1≠x2)有如下结论:①f(x1+x2)=f(x1)+f(x2);②f(x1·x2)=f(x1)+f(x2);③>0;④f()<.上述结论中正确结论的序号是________.
解析:由运算律f(x1)+f(x2)=lgx1+lgx2=lgx1x2=f(x1x2),所以②对;因为f(x)是定义域内的增函数,所以③正确;f()=lg,==lg,∵≥,且x1≠x2,∴lg>lg,所以④错误.
答案:②③
1.(2009年高考北京卷改编)为了得到函数y=lg的图象,只需把函数y=lgx的图象上所有的点________.
解析:∵y=lg=lg(x+3)-1,∴将y=lgx的图象上的点向左平移3个单位长度得到y=lg(x+3)的图象,再将y=lg(x+3)的图象上的点向下平移1个单位长度得到y=lg(x+3)-1的图象.
答案:向左平移3个单位长度,再向下平移1个单位长度
6.若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1).(1)求f(log2x)的最小值及相应x的值;(2)若f(log2x)>f(1)且log2f(x)<f(1),求x的取值范围.
解:(1)∵f(x)=x2-x+b,∴f(log2a)=(log2a)2-log2a+b=b,∴log2a=1,∴a=2.又∵log2f(a)=2,∴f(a)=4.∴a2-a+b=4,∴b=2.∴f(x)=x2-x+2.
∴f(log2x)=(log2x)2-log2x+2=(log2x-)2+.
∴当log2x=,即x=时,f(log2x)有最小值.
(2)由题意知∴
∴∴0<x<1.
B组
5.(原创题)已知函数f(x)=alog2x+blog3x+2,且f()=4,则f(2010)的值为_.
解析:设F(x)=f(x)-2,即F(x)=alog2x+blog3x,则F()=alog2+blog3=-(alog2x+blog3x)=-F(x),∴F(2010)=-F()=-[f()-2]=-2,
即f(2010)-2=-2,故f(2010)=0.答案:0
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com