题目列表(包括答案和解析)
10.如图,在三棱锥S-ABC中,OA=OB,O为BC中点,SO⊥平面ABC,E为SC中点,F为AB中点.
(1)求证:OE∥平面SAB;
(2)求证:平面SOF⊥平面SAB.
证明:(1)取AC的中点G,连结OG,EG,
∵OG∥AB,EG∥AS,EG∩OG=G,SA∩AB=A,
∴平面EGO∥平面SAB,OE⊂平面OEG
∴OE∥平面SAB
(2)∵SO⊥平面ABC,
∴SO⊥OB,SO⊥OA,
又∵OA=OB,SA2=SO2+OA2,SB2=SO2+OB2,
∴SA=SB,又F为AB中点,
∴SF⊥AB,∵SO⊥AB,
∵SF∩SO=S,∴AB⊥平面SOF,
∵AB⊂平面SAB,∴平面SOF⊥平面SAB.
9.在正四棱锥P-ABCD中,PA=AB,M是BC的中点,G是△PAD的重心,则在平面PAD中经过G点且与直线PM垂直的直线有________条.
解析:设正四棱锥的底面边长为a,则侧棱长为a.
由PM⊥BC,
∴PM==a,
连结PG并延长与AD相交于N点,
则PN=a,MN=AB=a,
∴PM2+PN2=MN2,
∴PM⊥PN,又PM⊥AD,
∴PM⊥面PAD,
∴在平面PAD中经过G点的任意一条直线都与PM垂直.答案:无数
8.(2010年江苏昆山模拟)在矩形ABCD中,AB=3,AD=4,P在AD上运动,设∠ABP=θ,将△ABP沿BP折起,使得平面ABP垂直于平面BPDC,AC长最小时θ的值为________.
解析:过A作AH⊥BP于H,连CH,∴AH⊥平面BCDP.
∴在Rt△ABH中,AH=3sinθ,BH=3cosθ.
在△BHC中,CH2=(3cosθ)2+42-2×4×3cosθ×cos(90°-θ),
∴在Rt△ACH中,
AC2=25-12sin2θ,
∴θ=45°时,AC长最小.答案:45°
7.如图所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.
解析:由AC⊥AB,AC⊥BC1,AC⊥平面ABC1,AC⊂平面ABC,∴平面ABC1⊥平面ABC,C1在平面ABC上的射影H必在两平面的交线AB上.答案:AB
6.已知二面角α-l-β的大小为30°,m、n为异面直线,m⊥平面α,n⊥平面β,则m、n所成的角为________.
解析:∵m⊥α,n⊥β,
∴m、n所成的夹角与二面角α-l-β所成的角相等或互补.
∵二面角α-l-β为30°,
∴异面直线m、n所成的角为30°.答案:30°
5.设a,b,c表示三条直线,α,β表示两个平面,则下列命题的逆命题不成立的是________.
①c⊥α,若c⊥β,则α∥β
②b⊂β,c是a在β内的射影,若b⊥c,则a⊥b
③b⊂β,若b⊥α,则β⊥α
④b⊂α,c⊄α,若c∥α,则b∥c
解析:当b⊂β,若β⊥α,则未必有b⊥α.答案:③
4.已知两条不同的直线m,n,两个不同的平面α,β,则下列命题中正确的是_.
①若m⊥α,n⊥β,α⊥β,则m⊥n
②若m⊥α,n∥β,α⊥β,则m⊥n
③若m∥α,n∥β,α∥β,则m∥n
④若m∥α,n⊥β,α⊥β,则m∥n
解析:易知①正确.而②中α⊥β且m⊥α⇒m∥β或m∈β,又n∥β,容易知道m,n的位置关系不定,因此②错误.而③中分别平行于两平行平面的直线的位置关系不定,因此③错误.而④中因为②不对,此项也不对.综上可知①正确.答案:①
3.设m,n是两条不同的直线, α,β是两个不同的平面,则下列命题正确的是.
①m⊥α,n⊂β,m⊥n⇒α⊥β ②α∥β,m⊥α,n∥β ⇒m⊥n
③α⊥β,m⊥α,n∥β ⇒m⊥n ④α⊥β,α∩β=m,n⊥m⇒n⊥β
解析:①错,不符合面面垂直的判断定理的条件;②由空间想象易知命题正确;③错,两直线可平行;④错,由面面垂直的性质定理可知只有当直线n在平面α内时命题才成立.答案:②
2.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是________.
①若m⊂α,n⊂β,m∥n,则α∥β
②若n⊥α,n⊥β,m⊥β,则m⊥α
③若m∥α,n∥β,m⊥n,则α⊥β
④若α⊥β,α∩β=n,m⊥n,则m⊥α
解析:由n⊥α,n⊥β可得α∥β,又因m⊥β,所以m⊥α.答案:②
1.设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是____.
①a⊥α,b∥β,α⊥β ②a⊥α,b⊥β,α∥β
③a⊂α,b⊥β,α∥β ④a⊂α,b∥β,α⊥β
解析:由α∥β,b⊥β ⇒b⊥α,又a⊂α,故a⊥b.答案:③
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com