题目列表(包括答案和解析)
9.地上画了一个角∠BDA=60°,某人从角的顶点D出发,沿角的一边DA行走10米后,拐弯往另一方向行走14米正好到达∠BDA的另一边BD上的一点,我们将该点记为点B,则B与D之间的距离为________米.
解析:如图,设BD=x m,
则142=102+x2-2×10×xcos60°,
∴x2-10x-96=0,
∴(x-16)(x+6)=0,
∴x=16或x=-6(舍).
答案:16
8.如图,在坡度为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为10米,则旗杆的高度为________米.
解析:设旗杆高为h米,最后一排为点A,第一排为点B,旗杆顶端为点C,则BC==h.
在△ABC中,AB=10,∠CAB=45°,∠ABC=105°,
所以∠ACB=30°,由正弦定理得,=,故h=30.
答案:30
7.在直径为30 m的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆形,且其轴截面顶角为120°,若要光源恰好照亮整个广场,则光源的高度为________ m.
解析:轴截面如图,则光源高度h==5(m).
答案:5
6.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向,另一灯塔在船的南偏西75°方向,则这只船的速度是每小时( )
A.5海里 B.5海里
C.10海里 D.10海里
解析:如图,依题意有∠BAC=60°,∠BAD=75°,所以∠CAD=∠CDA=15°,从而CD=CA=10,在直角三角形ABC中,可得AB=5,于是这只船的速度是=10(海里/小时).
答案:C
5.某人在C点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10米到D,测得塔顶A的仰角为30°,则塔高为( )
A.15米 B.5米
C.10米 D.12米
解析:如图,设塔高为h,在Rt△AOC中,∠ACO=45°,
则OC=OA=h.
在Rt△AOD中,
∠ADO=30°,则OD=h,
在△OCD中,
∠OCD=120°,CD=10,
由余弦定理得:OD2=OC2+CD2-2OC·CDcos∠OCD,
即(h)2=h2+102-2h×10×cos120°,
∴h2-5h-50=0,解得h=10,或h=-5(舍).
答案:C
4.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( )
A.锐角三角形 B.直角三角形
C.钝角三角形 D.由增加的长度决定
解析:设增加同样的长度为x,原三边长为a、b、c,且c2=a2+b2,a+b>c.新的三角形的三边长为a+x、b+x、c+x,知c+x为最大边,其对应角最大.
而(a+x)2+(b+x)2-(c+x)2=x2+2(a+b-c)x>0,由余弦定理知新的三角形的最大角的余弦为正,则为锐角,那么它为锐角三角形.
答案:A
3.(2010·江西高考)E,F是等腰直角△ABC斜边AB上的三等分点,则tan∠ECF=( )
A. B.
C. D.
解析:设AC=1,则AE=EF=FB=AB=,
由余弦定理得
CE=CF==,
所以cos∠ECF==,
所以tan∠ECF===.
答案:D
2.如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为( )
A.50 m B.50 m
C.25 m D. m
解析:由正弦定理得=,
∴AB===50(m).
答案:A
1.如果在测量中,某渠道斜坡坡比为,设α为坡角,那么cosα等于( )
A. B.
C. D.
答案:B
7.(2009·安徽高考)在平行四边形ABCD中,E和F分别是边CD和BC的中点.若=λ+μ,其中,λ,μ∈R,则λ+μ=________.
解析:如图,∵四边形ABCD为平行四边形,且E、F分别为CD、BC中点.
∴=+
=(-)+(-)
=(+)-(+)
=(+)-,
∴=(+),∴λ=μ=,∴λ+μ=.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com