题目列表(包括答案和解析)
1.由四舍五入得到的近似数0.600的有效数字是________.
7.用四舍五入法得到的近似数 ,其准确数 的范围是() .
A. B .
C. D.
6.近似数5和 的准确值的取值范围大小关系是() .
A. 的取值范围大 B.5的取值范围大
C.取值范围相同 D.不能确定
5.若有两个数 、 ,用四舍五入法得到的近似数分别是 和 ,则 、 应满足() .
A. 的精确度高B. 的精确度高
C. 与 的精确度相同D. , 的精确度不能确定
4.下列说法正确的是() .
A.近似数4000和4万的精确度一样
B.将圆周率 精确到千分位后有四个有效数字3、1、4、2
C.近似数 与近似数 的精确度一样
D.354600精确到万位是350000
3.将数375800精确到万位的近似数是() .
A.38B.380000C.37. 6万D.
2.将近似数 精确到 时,有效数字有() .
A.5、1、9B.5、2C.5、2、0D.5、l、9、7
1.由四舍五入得到的近似数 ,它的精确度是精确到() .
A.十分位B.百分位C.千分位D.万分位
(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;
(3)通过计算,直径为10cm的圆的周长是31.4cm;
(4)检查一双没洗过的手,发现带有各种细菌80000万个;
(5)1999年我国国民经济增长7.8%.
解:(1)43是准确数.因为43是质数,求平均数时不一定除得尽,所以82.5一般是近似数;
(2)一万二千是近似数;
(3)10是准确数,因为3.14是π的近似值,所以31.4是近似数;
(4)80000万是近似数;
(5)1999是准确数,7.8%是近似数.
说明:1.在近似数的计算中,分清准确数和近似数是很重要的,它是决定我们用近似计算法则进行计算,还是用一般方法进行计算的依据.
2.产生近似数的主要原因:
(1)“计算”产生近似数.如除不尽,有圆周率π参加计算的结果等等;
(2)用测量工具测出的量一般都是近似数,如长度、重量、时间等等;
(3)不容易得到,或不可能得到准确数时,只能得到近似数,如人口普查的结果,就只能是一个近似数;
(4)由于不必要知道准确数而产生近似数.
例2 下列由四舍五入得到的近似数,各精确到哪一位?各有哪几个有效数字?
(1)38200 (2)0.040 (3)20.05000 (4)4×104
分析:对于一个四舍五入得到的近似数,如果是整数,如38200,就精确到个位;如果有一位小数,就精确到十分位;两位小数,就精确到百分位;象0.040有三位小数就精确到千分位;象20.05000就精确到十万分位;而4×104=40000,只有一个有效数字4,则精确到万位.有效数字的个数应按照定义计算.
解:(1)38200精确到个位,有五个有效数字3、8、2、0、0.
(2)0.040精确到千分位(即精确到0.001)有两个有效数字4、0.
(3)20.05000精确到十万分位(即精确到0.00001),
有七个有效数字2、0、0、5、0、0、0.
(4)4×104精确到万位,有一个有效数字4.
说明:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零.如20.05000的有效数字是2、0、0、5、0、0、0七个.而20.05的有效数字是2、0、0、5四个.因为20.05000精确到0.00001,而20.05精确到0.01,精确度不一样,有效数字也不同,所以右边的三个0不能随意去掉.
(2)对有效数字,如0.040,4左边的两个0不是有效数字,4右边的0是有效数字.
(3)近似数40000与4×104有区别,40000表示精确到个位,有五个有效数字4、0、0、0、0,而4×104表示精确到万位,有1个有效数字4.
例3 下列由四舍五入得到的近似数,各精确到哪一位?各有几个有效数字?
(1)70万;(2)9.03万; (3)1.8亿; (4)6.40×105
分析:因为这四个数都是近似数,所以:(1)的有效数字是2个:7、0,0不是个位,而是“万”位;(2)的有效数字是3个:9、0、3,3不是百分位,而是“百”位;(3)的有效数字是2个:1、8,8不是十分位,而是“千万”位;(4)的有效数字是3个:6、4、0,0不是百分位,而是“千”位.
解:(1)70万. 精确到万位,有2个有效数字7、0;
(2)9.03万.精确到百位,有3个有效数字9、0、3;
(3)1.8亿.精确到千万位,有2个有效数字1、8;
(4)6.40×105.精确到千位,有3个有效数字6、4、0.
说明:较大的数取近似值时,常用×万,×亿等等来表示,这里的“×”表示这个近似数的有效数字,而它精确到的位数不一定是“万”或“亿”.对于不熟练的学生,应当写出原数之后再判断精确到哪一位,例如9.03万=90300,因为“3”在百位上,所以9.03万精确到百位.
例4 用四舍五入法,按括号里的要求对下列各数取近似值.
(1)1.5982(精确到0.01) (2)0.03049(保留两个有效数字)
(3)3.3074(精确到个位) (4)81.661(保留三个有效数字)
分析:四舍五入是指要精确到的那一位后面紧跟的一位,如果比5小则舍,如果比5大或等于5则进1,与再后面各位数字的大小无关.
(1)1.5982要精确到0.01即百分位,只看它后面的一位即千分位的数字,是8>5,应当进1,所以近似值为1.60.
(2)0.03049保留两个有效数字,3左边的0不算,从3开始,两个有效数字是3、0,再看第三个数字是4<5,应当舍,所以近似值为0.030.
(3)、(4)同上.
解:(1)1.5982≈1.60 (2)0.03049≈0.030
(3)3.3074≈3 (4)81.661≈81.7
说明:1.60与0.030的最后一个0都不能随便去掉.1.60是表示精确到0.01,而1.6表示精确到0.1.对0.030,最后一个0也是表示精确度的,表示精确到千分位,而0.03只精确到百分位.
例5 用四舍五入法,按括号里的要求对下列各数取近似值,并说出它的精确度(或有效数字).
(1)26074(精确到千位) (2)7049(保留2个有效数字)
(3)26074000000(精确到亿位) (4)704.9(保留3个有效数字)
分析:根据题目的要求:(1)26074≈26000;(2)7049≈7000;(3)26074000000≈26100000000;(4)704.9≈705;(1)、(2)、(3)题的近似值中看不出它们的精确度,所以必须用科学记数法表示.
解:(1)26074=2.6074×104≈2.6×104,精确到千位,有2个有效数字2、6.
(2)7049=7.049×103≈7.0×103,精确到百位,有两个有效数字7、0.
(3)26074000000=2.6074×1010≈2.61×1010,
精确到亿位,有三个有效数字2、6、1.
(4)704.9≈705,精确到个位,有三个有效数字7、0、5.
说明:求整数的近似数时,应注意以下两点:(1)近似数的位数一般都与已知数的位数相同;(2)当近似数不是精确到个位,或有效数字的个数小于整数的位数时,一般用科学记数法表示这个近似数.因为形如a×10n(1≤a<10,n为正整数=的数可以体现出整数的精确度.
习题精选
5.用计算器计算下列各式,将结果填写在横线上.
_______; _______;
_______; _______.
(1)你发现了什么?
(2)不用计算器,你能直接写出 吗?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com