题目列表(包括答案和解析)

 0  69569  69577  69583  69587  69593  69595  69599  69605  69607  69613  69619  69623  69625  69629  69635  69637  69643  69647  69649  69653  69655  69659  69661  69663  69664  69665  69667  69668  69669  69671  69673  69677  69679  69683  69685  69689  69695  69697  69703  69707  69709  69713  69719  69725  69727  69733  69737  69739  69745  69749  69755  69763  447348 

9. 解:原式= (x+y)2(x2-12x+36)-(x+y)4

=(x+y)2[(x-6)2-(x+y)2]

=(x+y)2(x-6+x+y)(x-6-x-y)

=(x+y)2(2x+y-6)(-6-y)

= - (x+y)2(2x+y-6)(y+6)

试题详情

8. 解:原式=y2[(x+y)2-12(x+y)+36]-y4

=y2(x+y-6)2-y4

=y2[(x+y-6)2-y2]

=y2(x+y-6+y)(x+y-6-y)

= y2(x+2y-6)(x-6)

试题详情

7. 解: 原式= x4-x3-(x-1)

= x3(x-1)-(x-1)

=(x-1)(x3-1)

=(x-1)2(x2+x+1)

提示:通常四项或者以上的因式分解,分组分的要合适,否则无法分解。另外,本题的结果不可写成(x-1)(x-1)( x2+x+1),能写成乘方的形式的,一定要写成乘方的形式。*使用了立方差公式,x3-1=(x-1)( x2+x+1)

试题详情

6.解:原式=-(a2-2ab+b2-4)

=-(a-b+2)(a-b-2)

提示:如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。但也不能见负号就先“提”,要对全题进行分析.防止出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。

试题详情

5.解:原式=( x2+1)( x2-1)

=( x2+1)(x+1)(x-1)

提示:许多同学分解到(x2+1)( x2-1)就不再分解了,因式分解必须分解到不能再分解为止。

试题详情

4.解:原式= [(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2

=(ax+bx-ay+by)2

提示:将(a+b)x和(a-b)y视为 一个整体。

试题详情

3.解:原式=3a(b-1)(1-8a3)

=3a(b-1)(1-2a)(1+2a+4a2) 

提示:立方差公式:a3-b3=(a-b)( a2+ab+b2)

立方和公式:a3+ b3=(a+b)( a2-ab+b2)

所以,1-8 a3=(1-2a)(1+2a+4a2)

试题详情

2. 提示:在公因式中相同字母x的最低次幂是xn-1,提公因式时xn+1提取xn-1后为x2,xn提取xn--1后为x。

解:原式=5 xn--1·x2-5xn--1·3x+5xn--1·12

  =5 xn--1 (x2-3x+12)

试题详情

1. 解:原式=2xy2·x3-2xy2·2x2+2xy2·5y2

     =2xy2 (x3-2x2+5y2)。

提示:先确定公因式,找各项系数的最大公约数2;各项相同字母的最低次幂xy2,即公因式2xy2,再把各项的公因式提到括号外面,把多项式写成因式的积。

试题详情

22.已知x2+3x+6是多项式x4-6x3+mx2+nx+36的一个因式,试确定m,n的值,并求出它的其它因式。

因式分解精选练习答案

一分解因式

试题详情


同步练习册答案