题目列表(包括答案和解析)
6. 如图,依次连结一个边长为1的正方形各边的中点,得到第二个正方形,再依次连结第二个正方形各边的中点,得到第三个正方形,按此方法继续下去, 则第六个正方形的面积是 .
5. 正方形的一条边长是3,那么它的对角线长是_______.
4. 下列命题中的假命题是( ).
A.一组邻边相等的平行四边形是菱形
B.一组邻边相等的矩形是正方形
c 一组对边平行且相等的四边形是平行四边形
D.一组对边相等且有一个角是直角的四边形是矩形
3. 已知四边形ABCD是菱形,当满足条件_________时,它成为正方形(填上你认为正确的一个条件即可).
2. 在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,则△ABO的周长是( )
A.12+12 B.12+6 C.12+ D.24+6
1. 四边形ABCD中,AC、BD相交于点O,能判别这个四边形是正方形的条件是( )
A.OA=OB=OC=OD,AC⊥BD B.AB∥CD,AC=BD
C.AD∥BC,∠A=∠C D.OA=OC,OB=OD,AB=BC
10.. 解:(1)∵四边形ABCD是平行四边形,∴∠1=∠C,AD=CB,AB=CD .
∵点E 、F分别是AB、CD的中点,∴AE=AB ,CF=CD .
∴AE=CF .∴△ADE≌△CBF .
(2)当四边形BEDF是菱形时,四边形 AGBD是矩形.
∵四边形ABCD是平行四边形,∴AD∥BC .
∵AG∥BD ,∴四边形 AGBD 是平行四边形.
∵四边形 BEDF 是菱形,
∴DE=BE .∵AE=BE ,
∴AE=BE=DE .
∴∠1=∠2,∠3=∠4.
∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.
∴∠2+∠3=90°.
即∠ADB=90°.
∴四边形AGBD是矩形.
课时三正方形
9. □AFCE是菱形,△AOE≌△COF,四边形AFCE是平行四边形,EF⊥AC
8.四边形AEDF是菱形,∵DE∥AC,∴∠ADE=∠DAF,
∵AD是△ABC的角平分线,
∴∠DAE=∠DAF,∴∠ADE=∠DAE,∴AE=ED.
又∵DE∥AC,DF∥AB
∴四边形AEDF是平行四边形,∴平行四边形AEDF是菱形.
1. B;2. C; 3.答案不唯一:等;4.5;5.C;6.24,提示:由已知得菱形一边长为5,由菱形的对角线互相平分且垂直,所以另一条对角线的长为,∴S菱=;7.①②⑥或③④⑤或③④⑥;
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com