题目列表(包括答案和解析)
3.把两个全等的非等腰三角形拼成平行四边形,可拼成的不同平行四边形的个数为( )
A.1 B.2 C.3 D.4
2.已知:四边形ABCD中,AD∥BC,分别添加下列条件之一:①AB∥CD;② AB=CD, ③AD=BC,④∠A=∠C,⑤∠B=∠D,能使四边形ABCD成为平行四边形的条件的个数是( )
A.4 B.3 C.2 D.1
1.下列条件中不能判定四边形ABCD为平行四边形的是( )
A.AB=CD,AD=BC B.AB∥CD,AB=CD
C.AB=CD ,AD∥BC D. AB∥CD,AD∥BC
12. 解:(1)有4对全等三角形.
分别为△AMO≌△CNO,△OCF≌△OAE,△AME≌△CNF,△ABC≌△CDA.
(2)证明:∵OA=OC,∠1=∠2,OE=OF,
∴△OAE≌△OCF,∴∠EAO=∠FCO.
在ABCD中,AB∥CD,
∴∠BAO=∠DCO,∴∠EAM=∠NCF.
课时三平行四边形的判定(一)
11.证明:∵DE∥AB,DF∥AC
∴四边形AEDF是平行四边形,∴DF=AE,又∵DE∥AB,∴∠B=∠EDC,又∵AB=AC,∴∠B=∠C,∴∠C=∠EDC,∴DE=CE,∴DF+DE=AE+CE=AC=AB.
7.D,提示:因为平行四边形的对角线把平行四边形分成面积相等的4个小三角形,所以平行四边形的面积为4;8.C,提示:根据三角形的两边之和大于第三边,两边之差小于第三边,若,则,所以符合条件的可能是18与20;9.30;10.8;
6. OE=OF, 在□ABCD中,OB=OD,∵BE⊥AC,DF⊥AC∴∠BEO=∠DFO,
又∠BOE=∠DOF,∴△BOE≌△DOF,∴OE=OF.
5. 证明:∵ABCD,∴OA=OC,DF∥EB∴∠E=∠F,又∵∠EOA=∠FOC
∴△OAE≌△OCF,∴OE=OF;
1. 10<x<22,提示:根据三角形的三边关系得,解得;2. B;3. BC=AD=4.8;4.A;提示:根据面积法求出邻边的比为3∶2,则邻边为7.5,5,则面积为7.5×2=152 ;
12. 如图,□ABCD O为D的对角线AC的中点,过点O作一条直线分别与AB、CD交于点M、N,点E、F在直线MN上,且OE=OF.
(1)图中共有几对全等三角形,请把它们都写出来;
(2)求证:∠MAE=∠NCF.
课时二答案:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com