题目列表(包括答案和解析)
9. 解:原式= (x+y)2(x2-12x+36)-(x+y)4
=(x+y)2[(x-6)2-(x+y)2]
=(x+y)2(x-6+x+y)(x-6-x-y)
=(x+y)2(2x+y-6)(-6-y)
= - (x+y)2(2x+y-6)(y+6)
8. 解:原式=y2[(x+y)2-12(x+y)+36]-y4
=y2(x+y-6)2-y4
=y2[(x+y-6)2-y2]
=y2(x+y-6+y)(x+y-6-y)
= y2(x+2y-6)(x-6)
7. 解: 原式= x4-x3-(x-1)
= x3(x-1)-(x-1)
=(x-1)(x3-1)
=(x-1)2(x2+x+1)
提示:通常四项或者以上的因式分解,分组分的要合适,否则无法分解。另外,本题的结果不可写成(x-1)(x-1)( x2+x+1),能写成乘方的形式的,一定要写成乘方的形式。*使用了立方差公式,x3-1=(x-1)( x2+x+1)
6.解:原式=-(a2-2ab+b2-4)
=-(a-b+2)(a-b-2)
提示:如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。但也不能见负号就先“提”,要对全题进行分析.防止出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。
5.解:原式=( x2+1)( x2-1)
=( x2+1)(x+1)(x-1)
提示:许多同学分解到(x2+1)( x2-1)就不再分解了,因式分解必须分解到不能再分解为止。
4.解:原式= [(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2
=(ax+bx-ay+by)2
提示:将(a+b)x和(a-b)y视为 一个整体。
3.解:原式=3a(b-1)(1-8a3)
=3a(b-1)(1-2a)(1+2a+4a2)
提示:立方差公式:a3-b3=(a-b)( a2+ab+b2)
立方和公式:a3+ b3=(a+b)( a2-ab+b2)
所以,1-8 a3=(1-2a)(1+2a+4a2)
2. 提示:在公因式中相同字母x的最低次幂是xn-1,提公因式时xn+1提取xn-1后为x2,xn提取xn--1后为x。
解:原式=5 xn--1·x2-5xn--1·3x+5xn--1·12
=5 xn--1 (x2-3x+12)
1. 解:原式=2xy2·x3-2xy2·2x2+2xy2·5y2
=2xy2 (x3-2x2+5y2)。
提示:先确定公因式,找各项系数的最大公约数2;各项相同字母的最低次幂xy2,即公因式2xy2,再把各项的公因式提到括号外面,把多项式写成因式的积。
22.已知x2+3x+6是多项式x4-6x3+mx2+nx+36的一个因式,试确定m,n的值,并求出它的其它因式。
因式分解精选练习答案
一分解因式
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com