题目列表(包括答案和解析)
1.运用公式法
在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:
(1)a2-b2=(a+b)(a-b);
(2)a2±2ab+b2=(a±b)2;
(3)a3+b3=(a+b)(a2-ab+b2);
(4)a3-b3=(a-b)(a2+ab+b2).
下面再补充几个常用的公式:
(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;
(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);
(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;
(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;
(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.
运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.
例1 分解因式:
(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;
(2)x3-8y3-z3-6xyz;
(3)a2+b2+c2-2bc+2ca-2ab;
(4)a7-a5b2+a2b5-b7.
解 (1)原式=-2xn-1yn(x4n-2x2ny2+y4)
=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]
=-2xn-1yn(x2n-y2)2
=-2xn-1yn(xn-y)2(xn+y)2.
(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)
=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).
(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2
=(a-b)2+2c(a-b)+c2
=(a-b+c)2.
本小题可以稍加变形,直接使用公式(5),解法如下:
原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)
=(a-b+c)2
(4)原式=(a7-a5b2)+(a2b5-b7)
=a5(a2-b2)+b5(a2-b2)
=(a2-b2)(a5+b5)
=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)
=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)
例2 分解因式:a3+b3+c3-3abc.
本题实际上就是用因式分解的方法证明前面给出的公式(6).
分析 我们已经知道公式
(a+b)3=a3+3a2b+3ab2+b3
的正确性,现将此公式变形为
a3+b3=(a+b)3-3ab(a+b).
这个式也是一个常用的公式,本题就借助于它来推导.
解 原式=(a+b)3-3ab(a+b)+c3-3abc
=[(a+b)3+c3]-3ab(a+b+c)
=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)
=(a+b+c)(a2+b2+c2-ab-bc-ca).
说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为
a3+b3+c3-3abc
显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.
如果令x=a3≥0,y=b3≥0,z=c3≥0,则有
等号成立的充要条件是x=y=z.这也是一个常用的结论.
例3 分解因式:x15+x14+x13+…+x2+x+1.
分析 这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式an-bn来分解.
解 因为
x16-1=(x-1)(x15+x14+x13+…x2+x+1),
所以
说明 在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.
3.用待定系数法分解因式:
(1)2x2+3xy-9y2+14x-3y+20;
(2)x4+5x3+15x-9.
本资料由《七彩教育网》 提供!
2.用求根法分解因式:
(1)x3+x2-10x-6;
(2)x4+3x3-3x2-12x-4;
(3)4x4+4x3-9x2-x+2.
1.用双十字相乘法分解因式:
(1)x2-8xy+15y2+2x-4y-3;
(2)x2-xy+2x+y-3;
(3)3x2-11xy+6y2-xz-4yz-2z2.
3.待定系数法
待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.
在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.
例4 分解因式:x2+3xy+2y2+4x+5y+3.
分析 由于
(x2+3xy+2y2)=(x+2y)(x+y),
若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.
解 设
x2+3xy+2y2+4x+5y+3
=(x+2y+m)(x+y+n)
=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,
比较两边对应项的系数,则有
解之得m=3,n=1.所以
原式=(x+2y+3)(x+y+1).
说明 本题也可用双十字相乘法,请同学们自己解一下.
例5 分解因式:x4-2x3-27x2-44x+7.
分析 本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.
解 设
原式=(x2+ax+b)(x2+cx+d)
=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,
所以有
由bd=7,先考虑b=1,d=7有
所以
原式=(x2-7x+1)(x2+5x+7).
说明 由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.
本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.
练习二
2.求根法
我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如
f(x)=x2-3x+2,g(x)=x5+x2+6,…,
当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)
f(1)=12-3×1+2=0;
f(-2)=(-2)2-3×(-2)+2=12.
若f(a)=0,则称a为多项式f(x)的一个根.
定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.
根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.
定理2
的根,则必有p是a0的约数,q是an的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为an的约数.
我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.
例2 分解因式:x3-4x2+6x-4.
分析 这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有
f(2)=23-4×22+6×2-4=0,
即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.
解法1 用分组分解法,使每组都有因式(x-2).
原式=(x3-2x2)-(2x2-4x)+(2x-4)
=x2(x-2)-2x(x-2)+2(x-2)
=(x-2)(x2-2x+2).
解法2 用多项式除法,将原式除以(x-2),
所以
原式=(x-2)(x2-2x+2).
说明 在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.
例3 分解因式:9x4-3x3+7x2-3x-2.
分析 因为9的约数有±1,±3,±9;-2的约数有±1,±
为:
所以,原式有因式9x2-3x-2.
解 9x4-3x3+7x2-3x-2
=9x4-3x3-2x2+9x2-3x-2
=x2(9x3-3x-2)+9x2-3x-2
=(9x2-3x-2)(x2+1)
=(3x+1)(3x-2)(x2+1)
说明 若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式
可以化为9x2-3x-2,这样可以简化分解过程.
总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.
1.双十字相乘法
分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.
例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为
2x2-(5+7y)x-(22y2-35y+3),
可以看作是关于x的二次三项式.
对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为
即
-22y2+35y-3=(2y-3)(-11y+1).
再利用十字相乘法对关于x的二次三项式分解
所以
原式=[x+(2y-3)][2x+(-11y+1)]
=(x+2y-3)(2x-11y+1).
上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:
它表示的是下面三个关系式:
(x+2y)(2x-11y)=2x2-7xy-22y2;
(x-3)(2x+1)=2x2-5x-3;
(2y-3)(-11y+1)=-22y2+35y-3.
这就是所谓的双十字相乘法.
用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:
(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);
(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.
例1 分解因式:
(1)x2-3xy-10y2+x+9y-2;
(2)x2-y2+5x+3y+4;
(3)xy+y2+x-y-2;
(4)6x2-7xy-3y2-xz+7yz-2z2.
解 (1)
原式=(x-5y+2)(x+2y-1).
(2)
原式=(x+y+1)(x-y+4).
(3)原式中缺x2项,可把这一项的系数看成0来分解.
原式=(y+1)(x+y-2).
(4)
原式=(2x-3y+z)(3x+y-2z).
说明 (4)中有三个字母,解法仍与前面的类似.
蚊子与牛一样重
从前有一只骄傲的蚊子,总认为自己的体重和牛是一样重。有一天,它找到了牛,并说出了体重一样的理由。它认为,可以设自己的体重为a,牛的体重为b,则有:
a2-2ab+b2=b2-2ab+a2
左右两边分别化为:(a-b)2=(b-a)2
从而就有:a-b=b-a
移项,得:2a=2b,
即a=b
蚊子骄傲地把自己的理由说完,牛睁大了眼睛,听傻了!
请同学们想一想,牛和蚊子的体重真的会一样吗?若不一样,那么蚊子的证明究竟错在哪里呢?
在一次火灾中,大约有2.5×105人无家可归,假如一顶帐篷占地100m2,可以安置40个床位。为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约占地多少平方米?估计你校的操场中可以安置多少人?要安置这些人,大约需要多少个这样的操场?
2、求证:1111-1110-119=119×109
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com