题目列表(包括答案和解析)

 0  85271  85279  85285  85289  85295  85297  85301  85307  85309  85315  85321  85325  85327  85331  85337  85339  85345  85349  85351  85355  85357  85361  85363  85365  85366  85367  85369  85370  85371  85373  85375  85379  85381  85385  85387  85391  85397  85399  85405  85409  85411  85415  85421  85427  85429  85435  85439  85441  85447  85451  85457  85465  447348 

4. 有一种螃蟹,从海上捕获后不放养最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去。假设放养期内蟹的个体重量基本保持不变。现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时的市场价为每千克30元。据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元。

(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式;

(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q与x的函数关系式;

(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额-收购成本-费用)?增大利润是多少?

试题详情

3. 心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y随时间t的变化规律有如下关系(04黄冈)

 

(1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中?

(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?

(3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目?

试题详情

2.某宾馆有50个房间供游客居住。当每个房间定价为每天180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲。如果游客居住房间,宾馆每天对每个房间需支出20元的各种费用。房价为多少时,宾馆利润最大?

试题详情

1.  某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货

员,计划全商场日营业额(指每天卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表(1),每1万元营业额所得利润情况如表(2)。商场将计划日营业额分配给三个经营部,设分配给百货部,服装部和家电部的营业额分别为x,y和z(单位:万元,x、y、z都是整数)。(1)请用含x的代数式分别表示y和z;(2)若商场预计每日的总利润为C(万元),且C满足19≤C≤19.7。问商场应如何分配营业额给三个经营部?各应分别安排多少名售货员?

试题详情

28. (10分)如图:ABCD的对角线AC、BD相交于点O,BD=12cm,AC=6cm,点E在线段BO上从点B以1cm/s的速度运动,点F在线段OD上从点O以2cm/s的速度运动.

(1)若点E、F同时运动,设运动时间为t秒,当t为何值时,四边形AECF是平行四边形.

(2)在(1)的条件下,①当AB为何值时,四边形AECF是菱形;②四边形AECF可以是矩形吗?为什么?

试题详情

27. (07哈尔滨)现将三张形状、大小完全相同的平行四边形透明纸片,分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图1、图2、图3).

分别在图1、图2、图3中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形.

要求:

(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形;

(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙;

(3)所画出的几何图形的各顶点必须与小正方形的顶点重合.

试题详情

26.甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图12-1、图12-2的统计图.

(1)在图12-2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况;

(2)已知甲队五场比赛成绩的平均分=90分,请你计算乙队五场比赛成绩的平均分

(3)就这五场比赛,分别计算两队成绩的极差;

(4)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计情况,试从平均分、折线的走势、获胜场数和极差四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?

 

试题详情

25. 如图, 图是由边长为1的小菱形组成的网格,点A、B在网络格的格点上

(1)请你设计一种规则,用数字或符号表示点A的位置(画图并说明)

(2)以同样的规则表示点B的位置。

试题详情

24.在等腰三角形ABC中,点D是直线BC上一点,DE∥AC交直线AB于E点, DF∥AB交直线AC于F点,请解答下列问题:

(1)如图,当点D在线段BC上时,证明:DE+DF=AB

(2)当点D在线段BC的延长线上时,请你参考(1)画出正确的图形,并写出线段DE,DF,AB之间的关系(不要证明)

试题详情

23. 用直尺和圆规作一个菱形,使它的两条对角线分别等于已知线段a、b.

如果a、b的长分别为6cm和8cm,请求出此菱形的面积.

试题详情


同步练习册答案