题目列表(包括答案和解析)

 0  85272  85280  85286  85290  85296  85298  85302  85308  85310  85316  85322  85326  85328  85332  85338  85340  85346  85350  85352  85356  85358  85362  85364  85366  85367  85368  85370  85371  85372  85374  85376  85380  85382  85386  85388  85392  85398  85400  85406  85410  85412  85416  85422  85428  85430  85436  85440  85442  85448  85452  85458  85466  447348 

14.如图,有一座抛物线型拱桥,在正常水位时水面AB的宽是20米,如果水位上升3米时,水面CD的宽为10米,

 (1)建立如图所示的直角坐标系,求此抛物线的解析式;

 (2)现有一辆载有救援物质的货车从甲地出发,要经过此桥开往乙地,已知甲地到此桥千米,(桥长忽略不计)货车以每小时40千米的速度开往乙地,当行驶到1小时时,忽然接到紧急通知,前方连降大雨,造成水位以每小时米的速度持续上涨,(货车接到通知时水位在CD处),当水位达到桥拱最高点O时,禁止车辆通行;试问:汽车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过多少千米?

 

试题详情

13.某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高为0.8 m.水流在各个方向上沿形状相同的抛物线路径落下,根据设计图纸已知:图中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是

              .喷出的水流距水平面的最大高度是多少?如果不计其他因素,那么水池的半径至少为多少时,才能使喷出的水

流都落在水池内?

 

试题详情

12.某公司生产的A种产品,它的成本是2元,售价为3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y=-x2+x+1,如果把利润看成是销售总额减去成本费和广告费。

   (1)试写出年利润S(十万元)与广告费x(十万元)的函数关系式.

(2)如果投入广告费为10-30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增次?

(3)在(2)中,投入的广告费为多少万元时,公司获得的年利润最大?是多少?

试题详情

11.某公司推出了一种高效环保洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s和t之间的关系).根据图象提供的信息,解答下列问题:

(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;

(2)求截止到几月末公司累积利润可达到30万元;

(3)求第8个月公司所获利润是多少万元?

试题详情

10.在某服装批发市场,某种品牌的时装当季节即将来临时,价格呈上升趋势.设这种时装开始时定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售:从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售. (1)试建立销售价Y与周次X之间的函数关系式 (2)若这种时装每件进价Z与周次X之间的关系式为Z=-0.125 (X-8)2 +12(1≦x≦16),且为整数,试问:该服装第几周出售时,单件利润最大?最大利润是多少?

试题详情

9. 某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和成本进行了调研,结果如下:每件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1),每件商品的成本Q(元)与时间t(月)的关系可用一条抛物线的一部分上的点来表示(如图2)。

(说明:图1、图2中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本。)

请你根据图象提供的信息回答:

   (1)每件商品在3月份出售时的利润(利润=售价-成本)是多少元?

   (2)求图2中表示的每件商品的成本Q(元)与时间t(月)之间的函数关系式(不要求写自变量的取值范围);

   (3)你能求出三月份至七月份每件商品的利润W(元)与时间t(月)之间的函数关系式吗?(请写出计算过程,不要求写自变量的取值范围)若该公司共有此种商品30000件,准备在一个月内全部售完,请你计算一下至少可获利多少元?

试题详情

8.  某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投资1500万元进行批量生产。已知生产每件产品的成本为40元。在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件。设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额-生产成本-投资)为z(万元)。

(1)试写出y与x之间的函数关系式(不必写出x的取值范围);

(2)试写出z与x之间的函数关系式(不必写出x的取值范围);

(3)计算销售单价为160元时的年获利;并说明对同样的年获利,销售单价还可以是多少元,相应的年销售量分别是多少万件;

(4)公司计划:在第一年按年获利最大确定的销售单价,进行销售;第二年年获利不低于1130万元,请你借助函数的大致图像说明,第二年的销售单价x(元),应确定在什么范围。

试题详情

7.你知道吗?平时我们在跳大绳时,绳甩到最高处的形状可近似的看为抛物线,如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙、丁分别站在距甲拿绳的手水平距离1米、2.5米处,绳子甩到最高处时,刚好通过他们的头顶,已知学生丙的身高是1.5米,请你算一算学生丁的身高。

 

试题详情

6. 1在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动。如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:

(1)运动开始后第几秒时,△PBQ的面积等于8cm2

(2)设运动开始后第t秒时,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围;t为何值时S最小?求出S的最小值。

 

试题详情

5.如图,等腰Rt△ABC的直角边AB=2,点P、Q分别从A、C两点同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线相交于点D。

(1)设 AP的长为x,△PCQ的面积为S,求出S关于x的函数关系式;

(2)当AP的长为何值时,S△PCQ= S△ABC

试题详情


同步练习册答案