题目列表(包括答案和解析)
1.如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断)
30、有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.
请探究下列变化:
变化一:交换题设与结论.
已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.
求证:RQ为⊙O的切线.
变化二:运动探究:
29.如图,直线AB过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,B点坐标为(1,1).
(1)求直线和抛物线所表示的函数表达式;
(2)在抛物线上是否存在一点D,使得S△OAD=S△OBC,若不存在,说明理由;若存在,请求出点D的坐标。
28、2000年度东风公司神鹰汽车改装厂开发出A型农用车,其成本价为每辆2万元,出厂价为每辆2.4万元,年销售价为10000辆,2001年为了支援西部大开发的生态农业建设,该厂抓住机遇,发展企业,全面提高A型农用车的科技含量,每辆农用车的成本价增长率为x,出厂价增长率为0.75x,预测年销售增长率为0.6x.(年利润=(出厂价-成本价)×年销售量)
(1)求2001年度该厂销售A型农用车的年利润y(万元)与x之间的函数关系。
(2)该厂要是2001年度销售A型农用车的年利润达到4028万元,该年度A型农用车的年销售量应该是多少辆?
27.(本小题满分10分)已知某山区的平均气温与该山的海拔高度的关系见下表:
海拔高度(单位“米”) |
0 |
100 |
200 |
300 |
400 |
... |
平均气温(单位“℃”) |
22 |
21.5 |
21 |
20.5 |
20 |
... |
(1)若海拔高度用x(米)表示,平均气温用y(℃)表示,试写出y与x之间的函数关系式;
(2)若某种植物适宜生长在18℃-20℃(包含18℃,也包含20℃)山区,请问该植物适宜种植在海拔为多少米的山区?
26. 15.如图二次函数y=ax2+bx+c的图象经过A 、B、C
三点,
(1)观察图象,写出A 、B、C三点的坐标,
并求出抛物线解析式,
(2)求此抛物线的顶点坐标和对称轴
(3)观察图象,当x取何值时,y<0?y=0?y>0?
25.如图,⊙O1和⊙O2相交于点A、B,AB的长为6cm,在⊙O1中有一以AB为一边的内接正三角形ABC,在⊙O2中有一以AB为一边的内接正方形ABDE,求两圆的圆心距O1O2的长.
24.如图,PA、PB、EF都为⊙O的切线,A、B、D为切点,若⊙O的半径为,PA=,求:(1)△PEF的周长;(2)∠P的度数.
23.(本题满分6分)
为了从甲、乙两名学生中选拔一人参加全国数学竞赛,李老师每个月对他们的竞赛成绩进行一次测验,下图是两人赛前5次测验成绩的折线统计图.
①分别求出甲、乙两名学生5次测验成绩的平均数、极差及方差并且填在下表中;
②请你参谋一下,李老师应选派哪一名学生参加这次竞赛.请结合所学习的统计知识说明理由.
解:(1) 填表如下:
|
(2) 李老师应选派 参加这次竞赛.
理由:
22.(本题满分6分)
已知:△ABC(如图),
(1)求作:作△ABC的内切圆⊙I.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明).
(2) 在题(1)已经作好的图中,若∠BAC=88°,求∠BIC的度数.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com