题目列表(包括答案和解析)

 0  85545  85553  85559  85563  85569  85571  85575  85581  85583  85589  85595  85599  85601  85605  85611  85613  85619  85623  85625  85629  85631  85635  85637  85639  85640  85641  85643  85644  85645  85647  85649  85653  85655  85659  85661  85665  85671  85673  85679  85683  85685  85689  85695  85701  85703  85709  85713  85715  85721  85725  85731  85739  447348 

24.在平面直角坐标系中,抛物线轴交于两点(点在点的左侧),与轴交于点,点的坐标为,将直线沿轴向上平移3个单位长度后恰好经过两点.

(1)求直线及抛物线的解析式;

(2)设抛物线的顶点为,点在抛物线的对称轴上,且,求点的坐标;

(3)连结,求两角和的度数.

[解析]     ⑴ 沿轴向上平移3个单位长度后经过轴上的点

设直线的解析式为

在直线上,

解得

直线的解析式为.···························································· 1分

抛物线过点

解得

抛物线的解析式为.························································· 2分

⑵ 由

可得

可得是等腰直角三角形.

如图1,设抛物线对称轴与轴交于点

过点于点

可得

中,

解得

在抛物线的对称轴上,

的坐标为.······························································· 5分

⑶ 解法一:

如图2,作点关于轴的对称点,则

连结

可得

由勾股定理可得

是等腰直角三角形,

两角和的度数为.··················································· 7分

解法二:

如图3,连结

同解法一可得

中,

中,

两角和的度数为.··················································· 7分

[点评]     本题设计得很精致,将几何与函数完美的结合在一起,对学生综合运用知识的能力要求较高,本题3问之间层层递进,后两问集中研究角度问题。中等层次的学生能够做出第⑴问,中上层次的学生可能会作出第⑵问,但第⑵问中符合条件的点有两个,此时学生易忽视其中某一个,成绩较好的学生才可能作出第⑶问,本题是拉开不同层次学生分数的一道好题。 本题考点:函数图形的平移、一次函数解析式的确定、二次函数解析式的确定、相似三角形、

等腰直角三角形的判定及性质、勾股定理

难度系数:第⑴问:5.5;第⑵问:3.5;第⑶问:2.5

试题详情

23.已知:关于的一元二次方程

(1)求证:方程有两个不相等的实数根;

(2)设方程的两个实数根分别为(其中).若是关于的函数,且,求这个函数的解析式;

(3)在(2)的条件下,结合函数的图象回答:当自变量的取值范围满足什么条件时,

[解析]     ⑴ 是关于的一元二次方程,

时,,即

方程有两个不相等的实数根.································································· 2分

⑵ 解:由求根公式,得

.················································································ 3分

.·············································································· 4分

为所求.··········· 5分

⑶ 在同一平面直角坐标系中分别画出

的图象.

···················································· 6分

由图象可得,当时,. 7分

[点评]     本题是一道代数综合题,综合了一元二次方程、一次函数、用函数的观点看不等式等知识。对考生要求较高。 本题考点:一元二次方程根的判别式、代数式的大小比较、一次函数、用函数的观点看不等式。 难度系数:第⑴问:0.65;第⑵问:0.5;第⑶问:0.45

易忽视点:第⑶问中

试题详情

22.(本小题满分4分)

已知等边三角形纸片的边长为边上的点,过点于点于点,过点于点,把三角形纸片分别沿按图1所示方式折叠,点分别落在点处.若点在矩形内或其边上,且互不重合,此时我们称(即图中阴影部分)为“重叠三角形”.

 

(1)若把三角形纸片放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形的面积;

(2)实验探究:设的长为,若重叠三角形存在.试用含的代数式表示重叠三角形的面积,并写出的取值范围(直接写出结果,备用图供实验,探究使用).

 

解:(1)重叠三角形的面积为    

(2)用含的代数式表示重叠三角形的面积为    的取值范围为  

[解析]     ⑴ 重叠三角形的面积为.    1分

⑵ 用含的代数式表示重叠三角形的面积为;··················· 2分

的取值范围为.······································································ 4分

[点评]     本题是一个探究性的折叠问题,考核了学生对新知识的探究能力。本题题目较长,理解题意是解决本题的关键。 本题考点:等边三角形的性质、图形的折叠、平行四边形的性质等。 难度系数:0.5

试题详情

21.(本小题满分5分)列方程或方程组解应用题:

京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?

[解析]     设这次试车时,由北京到天津的平均速度是每小时千米,则由天津返回北京的平均速度是每小时千米.    1分

依题意,得.···································································· 3分

解得.································································································· 4分

答:这次试车时,由北京到天津的平均速度是每小时200千米.····················· 5分

[点评]     本题也是一道与时事紧密相关的数学题,在考核学生数学知识的同时让学生了解时事,本题着重考核了学生应用适当的数学模型解决实际问题的能力。 本题考点:列一元一次方程解应用题 难度系数:0.6 易忽视点:预计时间为30分钟,学生易忽视。

试题详情

19.(本小题满分5分)

已知:如图,在中,,点上,以为圆心,长为半径的圆与分别交于点,且

(1)判断直线的位置关系,并证明你的结论;

(2)若,求的长.

[解析]     ⑴ 直线相切.  1分

证明:如图1,连结

,    

直线相切.············································································· 2分

⑵ 解法一:如图1,连结

的直径,   

.···················································································· 3分

.············································································ 4分

,    .·································································· 5分

解法二:如图2,过点于点.   

.······· 3分

.························ 4分

.······························································································· 5分

[点评]     本题是一道与圆相关的综合题,第⑴问是常规的切线证明,第⑵问则是可以综合相似、三角函数、勾股定理等知识解决,是考核学生综合能力的一道好题。 本题考点:圆切线的判定、圆的有关性质(垂径定理、直径所对的圆周角是直角)、相似(或三角函数、勾股定理) 难度系数:第⑴问:0.6;第⑵问:0.5

试题详情

18.(本小题满分5分)

如图,在梯形中,,求的长.

[解析]     解法一: 如图1,分别过点于点

于点.································ 1分

四边形是矩形.

.································· 2分

························································································· 4分

中,

.··············································· 5分

解法二:

如图2,过点,分别交于点.····························· 1分

中,

···································································· 2分

中,

.····················································································· 4分

中,

.···························································· 5分

[点评]     统观北京及全国各地中考试卷,几何中的计算往往会与两个知识点有关:①圆;②梯形。

本题考点:等腰直角三角形的性质、特殊四边形的性质、勾股定理.

难度系数:0.6.

试题详情

17.(本小题满分5分)

已知,求的值.

[解析]    

····························································································· 2分

.······································································································ 3分

时,.··············································································· 4分

原式.················································································· 5分

[点评]     试卷到本题以后整体难度有所上升。本题考核了分式的化简求值。解决本题的关键是分式的正确化简、将已知条件的适当变形代入消元。 本题考点:分式的化简求值。 难度系数:0.65

试题详情

16.(本小题满分5分)

如图,已知直线经过点,求此直线与轴,轴的交点坐标.

[解析]     由图象可知,点在直线上,    1分

解得.·································································································· 2分

直线的解析式为.······································································· 3分

,可得

直线与轴的交点坐标为.······························································ 4分

,可得

直线与轴的交点坐标为.······························································· 5分

[点评]     本题考核的是一次函数中较为基础的知识.题目难度较小 本题考点:一次函数解析式的确定、一次函数与坐标轴的交点的确定. 难度系数:0.75

试题详情

15.(本小题满分5分)

已知:如图,上一点,点分别在两侧..求证:

[解析]    

.·································································································· 2分

中,

.························································································ 4分

.·································································································· 5分

[点评]     本题是一道很简单的全等证明,纵观近几年北京市中考数学试卷,每一年都有一道比较简单的几何证明题:只需证一次全等,无需添加辅助线,且全等的条件都很明显。本题是解答题中几何的第1道题,难度较小是为了让所有的考生在进入解答题后都有一个顺利的开端,避免产生畏惧心理,这样考试才有信心做后面较难的题目。 本题考点:全等三角形的判定(SAS)和性质. 难度系数:0.9

试题详情


同步练习册答案