题目列表(包括答案和解析)
24.在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,将直线沿轴向上平移3个单位长度后恰好经过两点.
(1)求直线及抛物线的解析式;
(2)设抛物线的顶点为,点在抛物线的对称轴上,且,求点的坐标;
(3)连结,求与两角和的度数.
[解析] ⑴ 沿轴向上平移3个单位长度后经过轴上的点,
.
设直线的解析式为.
在直线上,
.
解得.
直线的解析式为.···························································· 1分
抛物线过点,
解得
抛物线的解析式为.························································· 2分
⑵ 由.
可得.
,,,.
可得是等腰直角三角形.
,.
如图1,设抛物线对称轴与轴交于点,
.
过点作于点.
.
可得,.
在与中,,,
.
,.
解得.
点在抛物线的对称轴上,
点的坐标为或.······························································· 5分
⑶ 解法一:
如图2,作点关于轴的对称点,则.
连结,
可得,.
由勾股定理可得,.
又,
.
是等腰直角三角形,,
.
.
.
即与两角和的度数为.··················································· 7分
解法二:
如图3,连结.
同解法一可得,.
在中,,,
.
在和中,
,,.
.
.
.
,
.
即与两角和的度数为.··················································· 7分
[点评] 本题设计得很精致,将几何与函数完美的结合在一起,对学生综合运用知识的能力要求较高,本题3问之间层层递进,后两问集中研究角度问题。中等层次的学生能够做出第⑴问,中上层次的学生可能会作出第⑵问,但第⑵问中符合条件的点有两个,此时学生易忽视其中某一个,成绩较好的学生才可能作出第⑶问,本题是拉开不同层次学生分数的一道好题。 本题考点:函数图形的平移、一次函数解析式的确定、二次函数解析式的确定、相似三角形、
等腰直角三角形的判定及性质、勾股定理
难度系数:第⑴问:5.5;第⑵问:3.5;第⑶问:2.5
23.已知:关于的一元二次方程.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两个实数根分别为,(其中).若是关于的函数,且,求这个函数的解析式;
(3)在(2)的条件下,结合函数的图象回答:当自变量的取值范围满足什么条件时,.
[解析] ⑴ 是关于的一元二次方程,
.
当时,,即.
方程有两个不相等的实数根.································································· 2分
⑵ 解:由求根公式,得.
或.················································································ 3分
,
.
,
,.·············································································· 4分
.
即为所求.··········· 5分
⑶ 在同一平面直角坐标系中分别画出
与的图象.
···················································· 6分
由图象可得,当时,. 7分
[点评] 本题是一道代数综合题,综合了一元二次方程、一次函数、用函数的观点看不等式等知识。对考生要求较高。 本题考点:一元二次方程根的判别式、代数式的大小比较、一次函数、用函数的观点看不等式。 难度系数:第⑴问:0.65;第⑵问:0.5;第⑶问:0.45
易忽视点:第⑶问中。
22.(本小题满分4分)
已知等边三角形纸片的边长为,为边上的点,过点作交于点.于点,过点作于点,把三角形纸片分别沿按图1所示方式折叠,点分别落在点,,处.若点,,在矩形内或其边上,且互不重合,此时我们称(即图中阴影部分)为“重叠三角形”.
(1)若把三角形纸片放在等边三角形网格中(图中每个小三角形都是边长为1的等边三角形),点恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠三角形的面积;
(2)实验探究:设的长为,若重叠三角形存在.试用含的代数式表示重叠三角形的面积,并写出的取值范围(直接写出结果,备用图供实验,探究使用).
解:(1)重叠三角形的面积为 ;
(2)用含的代数式表示重叠三角形的面积为 ;的取值范围为 .
[解析] ⑴ 重叠三角形的面积为. 1分
⑵ 用含的代数式表示重叠三角形的面积为;··················· 2分
的取值范围为.······································································ 4分
[点评] 本题是一个探究性的折叠问题,考核了学生对新知识的探究能力。本题题目较长,理解题意是解决本题的关键。 本题考点:等边三角形的性质、图形的折叠、平行四边形的性质等。 难度系数:0.5
21.(本小题满分5分)列方程或方程组解应用题:
京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?
[解析] 设这次试车时,由北京到天津的平均速度是每小时千米,则由天津返回北京的平均速度是每小时千米. 1分
依题意,得.···································································· 3分
解得.································································································· 4分
答:这次试车时,由北京到天津的平均速度是每小时200千米.····················· 5分
[点评] 本题也是一道与时事紧密相关的数学题,在考核学生数学知识的同时让学生了解时事,本题着重考核了学生应用适当的数学模型解决实际问题的能力。 本题考点:列一元一次方程解应用题 难度系数:0.6 易忽视点:预计时间为30分钟,学生易忽视。
19.(本小题满分5分)
已知:如图,在中,,点在上,以为圆心,长为半径的圆与分别交于点,且.
(1)判断直线与的位置关系,并证明你的结论;
(2)若,,求的长.
[解析] ⑴ 直线与相切. 1分
证明:如图1,连结.
,
.
, .
又,
.
.
直线与相切.············································································· 2分
⑵ 解法一:如图1,连结.
是的直径, .
,
.···················································································· 3分
,,
.············································································ 4分
, .·································································· 5分
解法二:如图2,过点作于点. .
,
.······· 3分
,,
.························ 4分
,
.······························································································· 5分
[点评] 本题是一道与圆相关的综合题,第⑴问是常规的切线证明,第⑵问则是可以综合相似、三角函数、勾股定理等知识解决,是考核学生综合能力的一道好题。 本题考点:圆切线的判定、圆的有关性质(垂径定理、直径所对的圆周角是直角)、相似(或三角函数、勾股定理) 难度系数:第⑴问:0.6;第⑵问:0.5
18.(本小题满分5分)
如图,在梯形中,,,,,,求的长.
[解析] 解法一: 如图1,分别过点作于点,
于点.································ 1分
.
又,
四边形是矩形.
.································· 2分
,,,
.
.
,
························································································· 4分
在中,,
.··············································· 5分
解法二:
如图2,过点作,分别交于点.····························· 1分
,
.
,
.
在中,,,,
···································································· 2分
在中,,,,
.
.····················································································· 4分
在中,,
.···························································· 5分
[点评] 统观北京及全国各地中考试卷,几何中的计算往往会与两个知识点有关:①圆;②梯形。
本题考点:等腰直角三角形的性质、特殊四边形的性质、勾股定理.
难度系数:0.6.
17.(本小题满分5分)
已知,求的值.
[解析]
····························································································· 2分
.······································································································ 3分
当时,.··············································································· 4分
原式.················································································· 5分
[点评] 试卷到本题以后整体难度有所上升。本题考核了分式的化简求值。解决本题的关键是分式的正确化简、将已知条件的适当变形代入消元。 本题考点:分式的化简求值。 难度系数:0.65
16.(本小题满分5分)
如图,已知直线经过点,求此直线与轴,轴的交点坐标.
[解析] 由图象可知,点在直线上, 1分
.
解得.·································································································· 2分
直线的解析式为.······································································· 3分
令,可得.
直线与轴的交点坐标为.······························································ 4分
令,可得.
直线与轴的交点坐标为.······························································· 5分
[点评] 本题考核的是一次函数中较为基础的知识.题目难度较小 本题考点:一次函数解析式的确定、一次函数与坐标轴的交点的确定. 难度系数:0.75
15.(本小题满分5分)
已知:如图,为上一点,点分别在两侧.,,.求证:.
[解析] ,
.·································································································· 2分
在和中,
.························································································ 4分
.·································································································· 5分
[点评] 本题是一道很简单的全等证明,纵观近几年北京市中考数学试卷,每一年都有一道比较简单的几何证明题:只需证一次全等,无需添加辅助线,且全等的条件都很明显。本题是解答题中几何的第1道题,难度较小是为了让所有的考生在进入解答题后都有一个顺利的开端,避免产生畏惧心理,这样考试才有信心做后面较难的题目。 本题考点:全等三角形的判定(SAS)和性质. 难度系数:0.9
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com