题目列表(包括答案和解析)
4、已知一次函数的图象如图所示,当x<1时,y的取值范围是( )
A、-2<y<0 B、-4<y<0 C、y<-2 D、y<-4
3、已知y1=x-5,y2=2x+1.当y1>y2时,x的取值范围是( ).
A、x>5 B、x< C、x<-6 D、x>-6
2、已知一次函数y=kx+b的图像,如图所示,当x<0时,y的取值范围是( )
A、y>0 B、y<0 C、-2<y<0 D、y<-2
(第2题) (第4题) (第5题)
1、已知函数y=8x-11,要使y>0,那么x应取( )
A、x> B、x< C、x>0 D、x<0
18.如图,点A的坐标是(0.5,0),现在点A绕着点O按逆时针方向旋转, 每秒钟旋转30°,同时点A离开O点的距离以每秒0.5个单位的速度在增大,当A点第11 秒钟时到达图中的P点处,求P点的坐标.
17.某学生站在公园湖边的M处,测得湖心亭A位于北偏东30°方向上,又测得游船码头B位于南偏东60°方向上.现有一艘游船从湖心亭A 处沿正南方向航行返回游船码头,已知M处与AB的距离MN=0.7千米,求湖心亭与游船码头B的距离(精确到0.1千米)
16.要求tan30°的值,可构造如图所示的直角三角形进行计算.
作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,那么BC=, ∠ABC= 30 °, ∴tan30°=.
在此图的基础上,通过添加适当的辅助线,可求出tan15°的值, 请简要写出你添加的辅助线和求出的tan15°的值.
15.如图,有一个同学用一个含有30°角的直角三角板估测他们学校的旗杆AB 的高度,他将30°的直角边水平放在1.3米高的支架CD上, 三角板的斜边与旗杆的顶点在同一直线上,他又量得D,B的距离为15米,求旗杆AB的高度(精确到0.1米).
14.如图,从B点测得塔顶A的仰角为60°,测得塔基D的仰角为45°, 已知塔基高出测量仪器20米(即DC=20米),求塔身AD的高(精确到1米).
13.计算:
(1)tan60°·cos30°-3tan30°·tan45°;
(2)sin30°+cos60°-tan45°-tan30°·tan60°;
(3);
(4)cos60°-3tan30°+tan60°+2sin245°.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com