题目列表(包括答案和解析)
47. 以x为自变量的二次函数y=-x2+2x+m,它的图象与y轴交于点C(0,3),与x轴交于点A、B,点A在点B的左边,点O为坐标原点.(1)求这个二次函数的解析式及点A,点B的坐标,画出二次函数的图象; (2)在x轴上是否存在点Q,在位于x轴上方部分的抛物线上是否存在点P,使得以A,P,Q三点为顶点的三角形与ΔAOC相似(不包含全等)?若存在,请求出点P,点Q的坐标;
姓名 班级 学号
46. 已知二次函数(1)证明:不论a取何值,抛物线的顶点Q总在x轴的下方;(2)设抛物线与y轴交于点C,如果过点C且平行于x轴的直线与该抛物线有两个不同的交点,并设另一个交点为点D,问:△QCD能否是等边三角形?若能,请求出相应的二次函数解析式;若不能,请说明理由;(3)在第(2)题的已知条件下,又设抛物线与x轴的交点之一为点A,则能使△ACD的面积等于的抛物线有几条?请证明你的结论.
45. 分)已知:如图,一次函数的图象经过第一、二、三象限,且与反比例函数的图象交于A、B两点,与Y轴交于点C,与X轴交于点D,OB=,tg∠DOB=1/3。(1)求此反比例函数的解析式;(2)设点A的横坐标为m,ΔABO的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;(3)当ΔOCD的面积等于S/2时,试判断过A、B两点的抛物线在X轴上截得的线段长能否等于3,如果能,求出此时抛物线的解析式;如果不能,请说明理由。
44. 某企业有员工300人,生产∠种产品,平均每人每年可创造利润m万元(m 为大于零的常数)。为减员增效,决定从中调配x人去生产新开发的B种产品,根据评估,调配后,继续生产A种产品的员工平均每人每年创造的利润可增加20%,生产B种产品的员工平均每人每年可创造利润1.54m万元。
(1) 调配后,企业生产∠种产品的年利润为____________万元,企业生产B种产品的年利润为_________________万元(用含x和m的代数式表示)。若设调配后企业全年总利润为y万元,则y关于x的函数解析式为____________.
(2) 若要求调配后,企业生产A种产品的年利润不小于调配前企业年利润的,生产B种产品的年利润大于调配前企业年利润的一半,应有哪几种调配方案 ?请设计出来,并指出其中哪种方案全年总利润最大(必要时,运算过程可保留3个有效数字)。
(3) 企业决定将(2)中的年最大总利润(设m=2)继续投资开发新产品。现有6种产品可供选择(不得重复投资同一种产品)各产品所需资金及所获年利润如下表:
如果你是企业决策者,为使此项投资所获年利润不少于145万元,你可以投资开发哪些产品?请写出两种投资方案。
产品 |
C |
D |
E |
F |
G |
H |
所需资金(万元) |
200 |
348 |
240 |
288 |
240 |
500 |
年利润(万元) |
50 |
80 |
20 |
60 |
40 |
85 |
43. 已知一次函数的图象分别交x轴、y轴于A、B两点,且与反比例函数的图象在第一象限交于点C(4,n),CD⊥x轴于D。(1)求m、n的值,并在给定的直角坐标系中作出一次函数的图象; (2)如果点P、Q分别从A、C两点同时出发,以相同的速度沿线段AD、CA向D、A运动,设AP=k。①k为何值时,以A、P、Q为顶点的三角形与△AOB相似?②k为何值时,△APQ的面积取得最大值?并求出这个最大值。
42. 如图已知一交函数y=-2x+6的图象与x轴交于点A,与y轴交于点C;二次函数y=ax2+bx+c(a≠0)的图象过A、C两点,并且与x轴交于另一点B(B在负半轴上)。(1)当S△ABC=4S△B0C时,求抛物线y=ax2+bx+c的解析式和此函数顶点坐标。(2)以OA的长为直径作⊙M,试判定⊙M与直线AC的位置关系,并说明理由。
41. 如图,已知平面直角坐标系中三点A(4,0),(0,4),P(x,0)(x<0),作PC⊥PB交过点A的直线l于点C(4,y)。(1)求y关于x的函数解析式;(2)当x取最大整数时,求BC与PA的交点Q坐标;
40. 已知:抛物线y=ax2+bx+c与y轴交于点C,与x轴交于点A(x1,0),b(x2,0)(x1<x2),顶点M的纵坐标是-4。若x1,x2是方程x2―2(m―1)+m2-7=0的两个实数根,且。(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)在抛物线上是否存在点P,使△PAB的面积等于四边形ACMB的面积的2倍?若存在,求出所有合条件的点P的坐标;若不存在,请说明理由。
39. 已知抛物线过点A(-2,0)、B(1,0)、C(0,2)三点。(1)求此抛物线的解析式;(2)在这条抛物线上是否存在点P,使∠AOP=450?若存在,请求出点P的坐标;若不存在,请说明理由。
38. 中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税年得额。此项税款按下表累进计算:
全月应纳税所得额 |
税率 |
不超过500元的部分 |
5% |
超过500元至2000元的部分 |
10% |
超过2000元至5000元的部分 |
15% |
…… |
…… |
(纳税款=应纳税额所得额对应的税率)
按此规定解下列问题:(1)设某甲的月工资、薪金所得为元(1300<<2800),需缴交的所得税款为元,试写出与的函数关系式;(2)若某乙一月份应缴交所得税款95元,那么他一月份的工资、薪金是多少元?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com