题目列表(包括答案和解析)
2.对顶角相等,但不互补;邻补角互补,但不相等………………………………( )
1.把一个角的一边反向延长,则可得到这个角的邻补角………………………( )
(五)证明题(每题6分,共24分)
27.已知:如图.AB∥CD,∠B=∠C.求证:∠E=∠F.
(27) (28) (29-1)
[提示]证明AC∥BD.[答案]证明:∵ AB∥CD(已知),
∴ ∠B=∠CDF(两直线平行,同位角相等).
∵ ∠B=∠C(已知), ∴ ∠CDF=∠C(等量代换).
∴ AC∥BD(内错角相等,两直线平行).
∴ ∠E=∠F(两直线平行,内错角相等).
28.已知:如图,AC∥DE,DC∥EF,CD平分∠BCD.求证:EF平分∠BED.
[提示]由AC∥DE.DC∥EF证∠1=∠3.由DC∥EF证∠2=∠4.再由CD平分∠BCA,即可证得∠3=∠4.
[答案]证明:∵ AC∥DE(已知),∴ ∠1=∠5(两直线平行,内错角相等).
同理∠5=∠3. ∴ ∠1=∠3(等量代换).
∵ DC∥EF(已知), ∴ ∠2=∠4(两直线平行,同位角相等).
∵ CD平分∠ACB, ∴ ∠1=∠2(角平分线定义),
∴ ∠3=∠4(等量代换), ∴ EF平分∠BED(角平分线定义).
29.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.
[提示]过点E作EF∥AB,证明∠BED=90°.
[答案]证明:过点E作EF∥AB.
∴ ∠BEF=∠B(两直线平行,内错角相等).
∵ ∠B=∠1, ∴ ∠BEF=∠1(等量代换).
同理可证:∠DEF=∠2.
∵ ∠1+∠BEF+∠DEF+∠2=180°(平角定义),
即2∠BEF+2∠DEF=180°,
∴ ∠BEF+∠DEF=90°(等式性质).
即∠BED=90°. ∴ BE⊥DE(垂直的定义).
30.已知:如图,AB∥CD,请你观察∠E、∠B、∠D之间有什么关系,并证明你所得的结论.
[提示]结论:∠B+∠E=∠D.过点E作EF∥AB.
[答案]结论:∠B+∠E=∠D.
证明:过点E作EF∥AB,
∴ ∠FEB=∠B(两直线平行,内错角相等).
∵ AB∥CD,EF∥AB,
∴ EF∥CD(平行公理推论),
∴ ∠FED=∠D(两直线平行,内错角相等).
∵ ∠FED=∠FEB+∠BED=∠B+∠BED,
∴ ∠B+∠BED=∠D(等量代换).
本题还可添加如图所示的辅助线,请你证明∠B+∠E=∠D.
[点评]这是一道探索结论型的问题.要通过对直观图形仔细观察,大胆猜想,设定结论,再进行推理,验证结论.直观图形是观察思考的依据,准确的直观图形可引发正确的直觉思维.所以作图不可忽视.直觉思维是正确,还必须用相关的理论来验证.这样得到的结论方可靠.
23.如图,AB∥CD∥PN,∠ABC=50°,∠CPN=150°.求∠BCP的度数.
[提示]由AB∥CD,∠ABC=50°可得∠BCD=50°.
由PN∥CD,∠CPN=150°,可得∠PCD=30°.
∴ ∠BCP=∠BCD-∠PCD=50°-30°=20°.[答案]20°.
24.如图,∠CAB=100°,∠ABF=110°,AC∥PD,BF∥PE,求∠DPE的度数.
[提示]由AC∥PD,∠CAB=100°,可得∠APD=80°.
同理可求∠BPE=70°.
∴ ∠DPE=180°-∠APD-∠BPE=180°-80°-70°=30°.[答案]30°.
25.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.
求∠PAG的度数.
(25) (26-1) (26-2)
[提示]由DB∥FG∥EC,可得
∠BAC=∠BAG+∠CAG =∠DBA+∠ACE =60°+36°=96°.
由AP平分∠BAC得∠CAP=∠BAC=×96°=48°.
由FG∥EC得∠GAC=ACE=36°.∴ ∠PAG=48°-36°=12°.[答案]12°.
26.如图,AB∥CD,∠1=115°,∠2=140°,求∠3的度数.
[提示]过点E作EG∥AB.∵ AB∥CD由平行公理推论可得EG∥CD.
由此可求得∠AEC的度数.由平角定义可求得∠3的度数.[答案]75°.
(四)解答题(本题5分)
22.根据命题“角平分线上的点到角的两边距离相等”,画出图形,并结合图形写出已知、求证(不证明).
[答案]已知:OC平分∠AOB,P是OC上任意一点.PD⊥OB,PE⊥OA,垂足分别是D、E.求证:PE=PD.
(22) (23) (24)
(三)选择题(每小题3分,共21分)
15.如图,已知直线AB与CD相交于点O,OE⊥CD.垂足为O,则图中∠AOE和
∠DOB的关系是( )(A)同位角 (B)对顶角 (C)互为补角 (D)互为余角
[提示]由OE⊥CD,知:∠AOE与∠AOC互余.∠AOC与∠BOD是对顶角.所以∠AOE与∠DOB互为余角.[答案]D.
16.如图,CD⊥AB,垂足为D,AC⊥BC,垂足为C.图中线段的长能表示点到直线(或线段)距离的线段有…( )(A)1条 (B)3条 (C)5条 (D)7条
[提示]CD的长表示点C到AB的距离;AC的长表示点A到BC的距离;BC的长表示点B到AC的距离;AD的长表示点A到CD的距离,BD的长表示点B到CD的距离.共5条.[答案]C.
17.若AO⊥BO,垂足为O,∠AOC︰∠AOB=2︰9,则∠BOC的度数等于……( )
(A)20° (B)70° (C)110° (D)70°或110°
[提示]OC可在∠AOB内部,也可在∠AOB外部,如图可示,故有两解.
设∠AOC=2x°,则∠AOB=9x°.
∵ AO⊥BO, ∴ ∠AOB=90°.
∵ 9x=90°,x=10°,∠AOC=2x=20°.
(1)∠BOC=∠AOB-∠AOC=90°-20°=70°;
(2)∠BOC=∠AOB+∠AOC=90°+20°=110°.
[答案]D.
18.下列命题中,真命题是……………………………………………………………( )
(A)同位角相等工 (B)同旁内角相等,两直线平行
(C)同旁内角互补 (D)同一平面内,平行于同一直线的两直线平行
[提示]两直线不平行,则同位角不相等,同旁内角不互补,所以A、C错误,B也不一定成立.如图所示直线a、b被直线c所截.∠1=∠2,∠3=∠4.显然a与b不平行.
(18) (20) (21)
[答案]D.
19.直线AB∥CD,且与EF、GH相交成如图可示的图形,则共得同旁内角…( )
(A)4对 (B)8对 (C)12对 (D)16对
[提示]该图可分离出四个基本图形,如图所示.
第三条直线截两平行线,此时图形呈“”型,有同旁内角两对;
第三条直线截两相交线,此时图形呈“”型,有同旁内角六对.
故图中共有同旁内角2×2+6×2=16(对). [答案]D.
20.如图,AD∥EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是……( )(A)2 (B)4 (C)5 (D)6
[提示]由AD∥EF∥BC,且EG∥AC可得:
∠1=∠DAH=∠FHC=∠HCG=∠EGB=∠GEH除∠1共5个.[答案]C.
21.某人从A点出发向北偏东60°方向速到B点,再从B点出发向南偏西15°方向速到C点,则∠ABC等于……………………………………………………………( )
(A)75° (B)105° (C)45° (D)135°
[提示]按要求画出图形再计算
∵ NA∥BS, ∴ ∠NAB=∠SBA=60°.
∵ ∠SBC=15°, ∴ ∠ABC=∠SBA-∠SBC=60°-15°=45°.[答案]C.
(二)填空题(每小题2分,共18分)
6.如图,当∠1=∠ 时,AB∥DC;当∠D+∠ =180°时,AB∥DC;当∠B=∠ 时,AB∥CD.
(6) (7) (8)
[提示]把题中的“AB∥CD”视作条件去找∠1的内错角、∠D的同旁内角和∠B的同位角.即得要填的角.[答案]4,DAB,5.
7.如图,AB∥CD,AD∥BC,∠B=60°,∠EDA=50°.则∠CDF= .
[提示]由AB∥CD,得∠DCF=∠B=60°,
由AD∥BC得∠ADC=∠DCF=60°,
∴ ∠ADE+∠ADC=50°+60°=110°,
∴ ∠CDF=180°-110°=70°. [答案]70°.
8.如图,O是△ABC内一点,OD∥AB,OE∥BC,OF∥AC,∠B=45°,∠C=75°,则∠DOE= ,∠EOF= ,∠FOD= .
[提示]由OD∥AB,∠B=45°,得∠ODC=∠B=45°.
由OE∥DC,∠DOE+∠ODC=180°,∴ ∠DOE=180°-45°=135°.
同理可求∠EOF=105°.由周角的定义可求∠FOD=120°.
[答案]135°,105°,120°.
9.两个角的两边分别平行,其中一个角比另一个角的3倍少20°.则这两个角的度数分别是 .
[提示]如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
设一个角为x度.则另一个角为(3x-20)度.
依据上面的性质得,
3x-20=x,或3x-20+x=180°.
∴ x=10,或x=50.
当x=50时,3x-20=3×50-20=130.
[答案]10°、10°或50°、130°.
[点评]通过列方程(或方程组)解题是几何计算常用的方法.
10.如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,
∠B-∠D=24°,则∠GEF= .
(10) (11)
[提示]由AB∥EF∥CD,可知∠BED=∠B+∠D.
已知∠B+∠BED+∠D=192°.
∴ 2∠B+2∠D=192°,∠B+∠D=96°.
又 ∠B-∠D=24°.
于是可得关于∠B、∠D的方程组解得 ∠B=60°.
由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=∠BEF=30°.
[答案]30°.
11.如图,AD∥BC,点O在AD上,BO、CO分别平分∠ABC、∠DCB,若
∠A+∠D=m°.则∠BOC=______.
[提示]由AD∥BC,BO平分∠ABC,可知∠AOB=∠CBO=∠ABC.
同理∠DOC=∠BCO=∠DCB.
∵ AD∥BC,∴ ∠A+∠ABC=180°,∠D+∠DCB=180°,
∴ ∠A+∠D+∠ABC+∠DCB=360°.
∵ ∠A+∠D=m°,∴ ∠ABC+∠DCB=360°-m°.
∴ ∠AOB+∠DOC=(∠ABC+∠DCB)=(360°-m°)=180°-m°.
∴ ∠BOC=180°-(∠AOB+∠DOC)=180°-(180°-m°)=m°.
[答案]m°.
12.有一条直的等宽纸带,按图(1)折叠时,纸带重叠部分中的∠a=度.
[提示]裁一张等宽纸带按图示折叠,体会一下题目的含义.将等宽纸带展平,便得图(2).由此图可知∠DAC=30°.AB是∠C′AC的平分线.∴ ∠a=75°.[答案]75°.
图(2) 图(1)
[点评]解类似具有操作性的实际问题时,不妨动手做一做,从中感受一下题目的意义,进而将实际问题转化成数学问题.用数学知识解决实际问题.这样做不仅能培养我们抽象思维和空间想象能力,而且能提高我们解决实际问题的能力.
13.把命题“在同一平面内垂直于同一直线的两直线互相平行”写成“如果…那么…”的形式是:如果______________,那么_____________.
[答案]在同一平面内两条直线垂直于同一条直线,这两条直线互相平行.
14.如图,在长方体中,与面BCC′B′平行的面是面;与面BCC′B′垂直的面是,与棱A′A平行的面有,与棱A′A垂直的面有.
(15)
[答案]面ADD′A;面ABB′A′,面ABCD,面A′B′C′D′,面DCC′D′;
面DCC′D′,面BCC′B′;面ABCD,面A′B′C′D′.
(一)判断题(每题2分,共10分)
1.过线段外一点画线段的中垂线……………………………………………………( )
[提示]线段外一点不一定在线段的中垂线上,所以过线段外一点画线段的垂线,不一定平分这条线段如图PQ⊥AB,垂足为O.但PQ不平分AB.[答案]×.
(1) (2) (3)
2.如果两个角互为补角,那么它们的角平分线一定互相垂直……………………( )
[提示]两个角互为补角时,这两个角可以是邻补角,也可以不是邻补角.当两角互补但不是邻补角时,则它们的角平分线不互相垂直.如图:∠AOB与∠AOC互补,OM平分∠AOC、ON平分∠AOB.显然OM与ON不垂直.[答案]×.
3.两条直线不平行,同旁内角不互补………………………………………………( )
[提示]如图,AB与CD不平行,EF与AB交于点G.与CD交于点H.
过点G作PQ∥CD.
∴ ∠QGF+∠GHD=180°.
∵ ∠BGF<∠QGF,
∴ ∠BGF+∠GHD<180°;
又 ∠PGH+∠GHC=180°,
∵ ∠AGH>∠PGH,
∴ ∠AGH+∠GHC>180°.
即两直线不平行,同旁内角不互补.[答案]√.
4.错误地判断一件事情的语句不叫命题…( )
[提示]判断一件事情的语句叫做命题.错误地判断得到的是假命题.假命题也是命题.
[答案]×.
5.如图,AB∥CD,那么∠B+∠F+∠D=∠E+∠G…………………………( )
[提示]过点E、F、G分别画EP∥AB,PQ∥AB,GM∥AB.
则AB∥EP∥FQ∥GM∥CD.
∴ ∠B=∠1,∠3=∠2,∠4=∠5,∠D=∠6.
∴ ∠B+∠3+∠4+∠D=∠1+∠2+∠5+∠6.
即∠B+∠EFG+∠D=∠BEF+∠FG(D) [答案]√.
(五)证明题(每题6分,共24分)
27.已知:如图.AB∥CD,∠B=∠C.求证:∠E=∠F.
28.已知:如图,AC∥DE,DC∥EF,CD平分∠BCD.求证:EF平分∠BED.
29.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.
30.已知:如图,AB∥CD,请你观察∠E、∠B、∠D之间有什么关系,并证明你所得的结论.
相交线、平行线答案
23.如图,AB∥CD∥PN,∠ABC=50°,∠CPN=150°.求∠BCP的度数.
24.如图,∠CAB=100°,∠ABF=110°,AC∥PD,BF∥PE,求∠DPE的度数.
25.如图,DB∥FG∥EC,∠ABD=60°,∠ACE=36°,AP平分∠BAC.
求∠PAG的度数.
26.如图,AB∥CD,∠1=115°,∠2=140°,求∠3的度数.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com