题目列表(包括答案和解析)
11-20 CACAC DAABC
提示:18、∵△ABC为等边三角形 ∴∠B=∠C=60°,又∠APD=60°
∴∠BAP+∠APB=∠APB+∠CPD=120°,∴∠BAP=∠DPC,∴△APB∽△PCD
∴:1=(AB-1):AB ∴AB=3
20、∵AE2+EF2=42+32=52=AF2
∴∠AEF=90°,∴易证△ABE∽△EFC ∴AB:EC=4:3 设AB=x
x:(x-)=4:3 ∴x2=
10、如题图:EF=DE=8-3=5 ∵EC=3,∴FC=4,易证△ABF∽△EFC
∴BF:3=8:4 BF=6
∴S阴影=·6·8+·4·3=30
9、∵==,又∵=
∴= ∴BC=-1 ∴AB=2+-1=1+
1-10 8 2 4 7:4 30 5,20 1+ 30
提示:4、如图1,过D分别作BC、AB的平分线有两条,另外,作∠ADE=∠ABC又一条,作∠CDF=∠ABC又一条,共4条
8、====
27、(8分)若矩形的一个短边与长边的比值为,(黄金分割数),我们把这样的矩形叫做黄金矩形
(1) 操作:请你在如图15所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD。
(2) 探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由。
(3) 归纳:通过上述操作及探究,请概括出具体有一般性的结论(不需证明)
26、(7分)已知,如图13,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC交于点E,EF⊥BD,垂足为F,我们可以证明+=成立,若将图13中的垂直改为斜交,如图14,AB∥CD,AB与BC交于点E,过点E作EF∥AB交BD于F,则
(1) +=还成立吗?如果成立,给出证明;如果不成立,请说明理由。
(2) 请找出S△ABC,S△BED和S△BDC间的关系,并给出证明。
25、如图12,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45°
(1) 求证:△ABD∽△DCE
(2) 设BD=x,AE=y,求y与x的函数关系式
24、如11图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连结AE,F为AE上一点,且∠BFE=∠C
(1) 求证:△ABF∽△EAD
(2) 若AB=4,S ABCD=,求AE的长
(3) 在(1)、(2)条件下,若AD=3,求BF的长(计算结果可含根号)
23、如图10,为了测量一棵树AB的高度,测量者在D点立一高CD等于2m的标杆,现测量者从E处可以看到标杆顶点C与树顶A在同一条直线上,如果测得BD=20m,FD=4m,EF=1.8m,求树高。
22、已知四边形ABCD与四边形A′B′C′D′相似,且AB:BC:CD:DA=20:15:9:8,四边形A′B′C′D′的周长为26,求四边形A′B′C′D′各边的长。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com