题目列表(包括答案和解析)

 0  87246  87254  87260  87264  87270  87272  87276  87282  87284  87290  87296  87300  87302  87306  87312  87314  87320  87324  87326  87330  87332  87336  87338  87340  87341  87342  87344  87345  87346  87348  87350  87354  87356  87360  87362  87366  87372  87374  87380  87384  87386  87390  87396  87402  87404  87410  87414  87416  87422  87426  87432  87440  447348 

93.(2009年四川资阳)25. 如图9,已知抛物线y=x2–2x+1的顶点为PA为抛物线与y轴的交点,过Ay轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点BP的直线ly轴于点C,连结OC,将△ACO′沿OC翻折后,点A落在点D的位置.

(1) (3分) 求直线l的函数解析式;

(2) (3分) 求点D的坐标;

(3) (3分) 抛物线上是否存在点Q,使得SDQC= SDPB? 若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.

(2009年四川资阳25题解析)

(1) 配方,得y=(x–2)2 –1,∴抛物线的对称轴为直线x=2,顶点为P(2,–1) .··············· 1分

x=0代入y=x2 –2x+1,得y=1,∴点A的坐标是(0,1).由抛物线的对称性知,点A(0,1)与点B关于直线x=2对称,∴点B的坐标是(4,1).··························································································· 2分

设直线l的解析式为y=kx+b(k≠0),将BP的坐标代入,有

解得∴直线l的解析式为y=x–3.·············································· 3分

(2) 连结ADOC于点E,∵ 点D由点A沿OC翻折后得到,∴ OC垂直平分AD

由(1)知,点C的坐标为(0,–3),∴ 在Rt△AOC中,OA=2,AC=4,∴ OC=2

据面积关系,有 ×OC×AE=×OA×CA,∴ AE=AD=2AE=

DFABF,易证Rt△ADF∽Rt△COA,∴

AF=·AC=DF=·OA=,································································ 5分

又 ∵OA=1,∴点D的纵坐标为1–= –,∴ 点D的坐标为(,–).·············· 6分

(3) 显然,OPAC,且O′为AB的中点,

∴ 点P是线段BC的中点,∴ SDPC= SDPB

故要使SDQC= SDPB,只需SDQC=SDPC

··············································································· 7分

P作直线mCD平行,则直线m上的任意一点与CD构成的三角形的面积都等于SDPC ,故m与抛物线的交点即符合条件的Q点.

容易求得过点C(0,–3)、D(,–)的直线的解析式为y=x–3,

据直线m的作法,可以求得直线m的解析式为y=x

x2–2x+1=x,解得 x1=2,x2=,代入y=x,得y1= –1,y2=

因此,抛物线上存在两点Q1(2,–1)(即点P)和Q2(),使得SDQC= SDPB.····· 9分

(仅求出一个符合条件的点Q的坐标,扣1分)

试题详情

92.(2009年重庆)26.已知:如图,在平面直角坐标系中,矩形OABC的边OAy轴的正半轴上,OCx轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点DDEDC,交OA于点E

(1)求过点EDC的抛物线的解析式;

(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;

(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQAB的交点P与点CG构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

 

(2009年重庆26题解析)解:(1)由已知,得

.············································································································ (1分)

设过点的抛物线的解析式为

将点的坐标代入,得

和点的坐标分别代入,得

··································································································· (2分)

解这个方程组,得

故抛物线的解析式为.··························································· (3分)

(2)成立.························································································· (4分)

在该抛物线上,且它的横坐标为

的纵坐标为.······················································································· (5分)

的解析式为

将点的坐标分别代入,得

  解得

的解析式为.········································································ (6分)

.··························································································· (7分)

过点于点

.··········································································································· (8分)

(3)上,,则设

①若,则

解得,此时点与点重合.

.··········································································································· (9分)

②若,则

解得 ,此时轴.

与该抛物线在第一象限内的交点的横坐标为1,

的纵坐标为

.······································································································· (10分)

③若,则

解得,此时是等腰直角三角形.

过点轴于点

,设

解得(舍去).

.··········································· (12分)

综上所述,存在三个满足条件的点

试题详情

91.(2009年重庆綦江)26.(11分)如图,已知抛物线经过点A(-2,0),抛物线的顶点为D,过0作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.

(1)求该抛物线的解析式;

(2)若动点P从点0出发,以每秒l个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问:当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?

(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒l个长度单位和2个长度单位的速度沿OC和B0运动,当其中一个点停止运动时另一个点也随之停止运动设它们运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.

(2009年重庆綦江26题解析)解:(1)抛物线经过点

·························································································· 1分

二次函数的解析式为:·················································· 3分

(2)为抛物线的顶点,则

··················································· 4分

时,四边形是平行四边形

················································ 5分

时,四边形是直角梯形

(如果没求出可由)

····························································································· 6分

时,四边形是等腰梯形

综上所述:当、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.·· 7分

(3)由(2)及已知,是等边三角形

,则········································································· 8分

=·································································································· 9分

时,的面积最小值为··································································· 10分

此时

······················································ 11分

试题详情

90.(2009年四川南充)21.如图9,已知正比例函数和反比例函数的图象都经过点

(1)求正比例函数和反比例函数的解析式;

(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;

(3)第(2)问中的一次函数的图象与轴、轴分别交于CD,求过ABD三点的二次函数的解析式;

(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由.

(2009年四川南充21题解析)解:(1)设正比例函数的解析式为

因为的图象过点,所以

,解得

这个正比例函数的解析式为.······································································· (1分)

设反比例函数的解析式为

因为的图象过点,所以

,解得

这个反比例函数的解析式为.······································································ (2分)

(2)因为点的图象上,所以

,则点.················································································· (3分)

设一次函数解析式为

因为的图象是由平移得到的,

所以,即

又因为的图象过点,所以

,解得

一次函数的解析式为.········································································ (4分)

(3)因为的图象交轴于点,所以的坐标为

设二次函数的解析式为

因为的图象过点、和

所以··················· (5分)      解得

这个二次函数的解析式为.····················································· (6分)

(4)轴于点的坐标是

如图所示,

假设存在点,使

四边形的顶点只能在轴上方,

 

.············································································· (7分)

在二次函数的图象上,

解得

时,点与点重合,这时不是四边形,故舍去,

的坐标为.······················································································ (8分)

试题详情

89.(2009年四川绵阳)25.如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作∠AEF = 90°,使EF交矩形的外角平分线BF于点F,设C(mn).

(1)若m = n时,如图,求证:EF = AE

(2)若mn时,如图,试问边OB上是否还存在点E,使得EF = AE?若存在,请求出点E的坐标;若不存在,请说明理由.

(3)若m = tn(t>1)时,试探究点E在边OB的何处时,使得EF =(t + 1)AE成立?并求出点E的坐标.

 

(2009年四川绵阳25题解析)(1)由题意得m = n时,AOBC是正方形.

如图,在OA上取点C,使AG = BE,则OG = OE

∴ ∠EGO = 45°,从而 ∠AGE = 135°.

BF是外角平分线,得 ∠EBF = 135°,∴ ∠AGE =∠EBF

∵ ∠AEF = 90°,∴ ∠FEB +∠AEO = 90°.

在Rt△AEO中,∵ ∠EAO +∠AEO = 90°,

∴ ∠EAO =∠FEB,∴ △AGE≌△EBFEF = AE

(2)假设存在点E,使EF = AE.设E(a,0).作FHx轴于H,如图.

由(1)知∠EAO =∠FEH,于是Rt△AOE≌Rt△EHF

FH = OEEH = OA

∴ 点F的纵坐标为a,即 FH = a

BF是外角平分线,知∠FBH = 45°,∴ BH = FH = a

又由C(mn)有OB = m,∴ BE = OBOE = ma

EH = ma + a = m

EH = OA = n, ∴ m = n,这与已知mn相矛盾.

因此在边OB上不存在点E,使EF = AE成立.

(3)如(2)图,设E(a,0),FH = h,则EH = OHOE = h + ma

由 ∠AEF = 90°,∠EAO =∠FEH,得 △AOE∽△EHF

EF =(t + 1)AE等价于 FH =(t + 1)OE,即h =(t + 1)a

,即

整理得 nh = ah + ama2,∴

h =(t + 1)a 代入得

ma =(t + 1)(na).

m = tn,因此 tna =(t + 1)(na).

化简得 ta = n,解得

t>1, ∴ nm,故EOB边上.

∴当EOB边上且离原点距离为处时满足条件,此时E(,0).

试题详情

88.(2009年四川眉山)24.如图,已知直线轴交于点A,与轴交于点D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0)。

⑴求该抛物线的解析式;

⑵动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标P。

⑶在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标。

(2009年四川眉山24题解析)(1)将A(0,1)、B(1,0)坐标代入解得

∴抛物线的解折式为…(2分)

(2)设点E的横坐标为m,则它的纵坐标为

即 E点的坐标()又∵点E在直线

   解得(舍去),

∴E的坐标为(4,3)……(4分)

(Ⅰ)当A为直角顶点时

过A作AP1⊥DE交x轴于P1点,设P1(a,0)  易知D点坐标为(-2,0)   由Rt△AOD∽Rt△POA得

,∴a=  ∴P1(,0)……(5分)

(Ⅱ)同理,当E为直角顶点时,P2点坐标为(,0)……(6分)

(Ⅲ)当P为直角顶点时,过E作EF⊥x轴于F,设P3()由∠OPA+∠FPE=90°,得∠OPA=∠FEP   Rt△AOP∽Rt△PFE 

解得

∴此时的点P3的坐标为(1,0)或(3,0)……(8分)

综上所述,满足条件的点P的坐标为(,0)或(1,0)或(3,0)或(,0)

(Ⅲ)抛物线的对称轴为…(9分)∵B、C关于x=对称   ∴MC=MB

要使最大,即是使最大 

由三角形两边之差小于第三边得,当A、B、M在同一直线上时的值最大.(10分)

易知直线AB的解折式为∴由  得 ∴M(,-)……(11分)

试题详情

87.(2009年四川凉山州)26.如图,已知抛物线经过两点,顶点为

(1)求抛物线的解析式;

(2)将绕点顺时针旋转90°后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;

(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.

(2009年四川凉山州26题解析)解:(1)已知抛物线经过

  解得

所求抛物线的解析式为.··································································· 2分

(2)

可得旋转后点的坐标为······················································································ 3分

时,由

可知抛物线过点

将原抛物线沿轴向下平移1个单位后过点

平移后的抛物线解析式为:.···························································· 5分

(3)上,可设点坐标为

配方得其对称轴为.······························ 6分

①当时,如图①,

此时

点的坐标为.····························································································· 8分

②当时,如图②

同理可得

此时

的坐标为

综上,点的坐标为.········································································· 10分

试题详情

86.(2009年四川成都)28.在平面直角坐标系xOy中,已知抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为,与x轴的交点为N,且COS∠BCO=

(1)求此抛物线的函数表达式;

   (2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由;

   (3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

(2009年四川成都28题解析)

试题详情

85.(2009年四川达州)23、(9分)如图11,抛物线轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6).

(1)求a的值及直线AC的函数关系式;

(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.

①求线段PM长度的最大值;

②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.

(2009年四川达州23题解析)解:(1)由题意得 6=a(-2+3)(-2-1)∴a=-21分

∴抛物线的函数解析式为y=-2(x+3)(x-1)与x轴交于B(-3,0)、A(1,0)

设直线AC为y=kx+b,则有0=k+b

6=-2k+b解得 k=-2

b=2

∴直线AC为y=-2x+23分

(2)①设P的横坐标为a(-2≤a≤1),则P(a,-2a+2),M(a,-2a2-4a+6)4分

∴PM=-2a2-4a+6-(-2a+2)=-2a2-2a+4=-2a2+a+14+92

=-2a+122+92

∴当a=-12时,PM的最大值为926分

②M1(0,6)7分

M2-14,6789分 

试题详情

109.(2009年宁夏)26.(10分)

已知:等边三角形的边长为4厘米,长为1厘米的线段的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点与点重合,点到达点时运动终止),过点分别作边的垂线,与的其它边交于两点,线段运动的时间为秒.

(1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出该矩形的面积;

(2)线段在运动的过程中,四边形的面积为,运动的时间为.求四边形的面积随运动时间变化的函数关系式,并写出自变量的取值范围.

(2009年宁夏26题解析)(1)过点,垂足为

运动到被垂直平分时,四边形是矩形,

时,四边形是矩形,

秒时,四边形是矩形.

····································································································· 4分

(2)时,

······························································ 6分

···································································· 8分

时,

······················································· 10分

试题详情


同步练习册答案