题目列表(包括答案和解析)

 0  87249  87257  87263  87267  87273  87275  87279  87285  87287  87293  87299  87303  87305  87309  87315  87317  87323  87327  87329  87333  87335  87339  87341  87343  87344  87345  87347  87348  87349  87351  87353  87357  87359  87363  87365  87369  87375  87377  87383  87387  87389  87393  87399  87405  87407  87413  87417  87419  87425  87429  87435  87443  447348 

60.(09年吉林长春)26.如图,直线分别与x轴、y轴交于A、B两点;直线与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).

(1)求点C的坐标.(1分)

(2)当0<t<5时,求S与t之间的函数关系式.(4分)

(3)求(2)中S的最大值.(2分)

(4)当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.(3分)

[参考公式:二次函数y=ax2+bx+c图象的顶点坐标为().]

 

(09年吉林长春26题解析)解:(1)由题意,得解得

∴C(3,).                     (1分)

(2)根据题意,得AE=t,OE=8-t.

∴点Q的纵坐标为(8-t),点P的纵坐标为t,

∴PQ= (8-t)-t=10-2t.

当MN在AD上时,10-2t=t,∴t=.          (3分)

当0<t≤时,S=t(10-2t),即S=-2t2+10t.

≤t<5时,S=(10-2t)2,即S=4t2-40t+100.      (5分)

(3)当0<t≤时,S=-2(t-)2+,∴t=时,S最大值=.

≤t<5时,S=4(t-5)2,∵t<5时,S随t的增大而减小,

∴t=时,S最大值=.

>,∴S的最大值为.          (7分)

(4)4<t<或t>6.                   (10分)

试题详情

59.(09年湖南株洲)23.(本题满分12分)如图,已知为直角三角形,,点轴上,点坐标为()(),线段轴相交于点,以(1,0)为顶点的抛物线过点

(1)求点的坐标(用表示);

(2)求抛物线的解析式;

(3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结 并延长交于点,试证明:为定值.

(09年湖南株洲23题解析)(1)由可知,又△ABC为等腰直角三角形,∴,所以点A的坐标是().          ………………… 3分

(2)∵  ∴,则点的坐标是().

又抛物线顶点为,且过点,所以可设抛物线的解析式为:,得:

  解得  ∴抛物线的解析式为   ………7分

(3)过点于点,过点于点,设点的坐标是,则.

  即,得

  即,得

又∵

为定值8.                  ……………………12分

试题详情

57.(09年湖南湘西自治州)25.(本题20分)在直角坐标系xoy中,抛物线x轴交于两点AB,与y轴交于点C,其中AB的左侧,B的坐标是(3,0).将直线沿y轴向上平移3个单位长度后恰好经过点BC

(1)    求k的值;

(2)    求直线BC和抛物线的解析式;

(3)    求△ABC的面积;

(4)    设抛物线顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标.

(09年湖南湘西自治州25题解析)解(1)直线沿y轴向上平移3个单位后,过两点BC

从而可设直线BC的方程为············································································ 2分

,得C(0,3)································································································ 3分

B(3,0)在直线上,

······················································································································ 5分

(2)由(1),直线BC的方程为·································································· 7分

又抛物线过点BC

∴抛物线方程为··················································································· 10分

(3)由(2),令

·········································································································· 12分

A(1,0),B(3,0),而C(0,3)

∴△ABC的面积SABC=(3-1)·3=3平方单位··························································· 15分

  (4)由(2),D(2,),设对称轴与x轴交于点F,与BC交于E,可得E(2,1),

连结AE

AECE,且AE=CE=

(或先作垂线AEBC,再计算也可)

在Rt△AFP与Rt△AEC中,

∵∠ACE=∠APE(已知) 

  即=

······································································ 18分

∴点P的坐标为(2,2)或(2,)·························· 20分

(x轴上、下方各一个)

(注:只有一个点扣1分)

试题详情

56.(09年湖南邵阳)25、如图(十二)直线l的解析式为y=-x+4, 它与x轴、y轴分

      相交于A、B两点,平行于直线l的直线m从原点O出发,沿x  

      轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别

      相交于M、N两点,运动时间为t秒(0<t≤4)

  (1)求A、B两点的坐标;

  (2)用含t的代数式表示△MON的面积S1

  (3)以MN为对角线作矩形OMPN,记 △MPN和△OAB重合部分的面积为S2 ;

   当2<t≤4时,试探究S2 与之间的函数关系;

图十二
 
  ‚在直线m的运动过程中,当t为何值时,S2 为△OAB的面积的?        

(09年湖南邵阳25题解析)(1)当时,;当时,;  2分

(2);···· 4分

(3)①当时,易知点的外面,则点的坐标为,

点的坐标满足

同理,则,··················································· 6分

所以

;··································· 8分

②当时,

解得两个都不合题意,舍去;··········································· 10分

时,,解得

综上得,当时,的面积的.·········································· 12分

注:解答题用其它方法解答,请参照评分.

试题详情

55.(09年湖南娄底)25.(本小题12分)如图11,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH

(HFDE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBAAHAC=2∶3

(1)延长HFABG,求△AHG的面积. 

(2)操作:固定△ABC,将直角梯形DEFH以每秒1个

单位的速度沿CB方向向右移动,直到点D与点B

重合时停止,设运动的时间为t秒,运动后的直角梯

形为DEFH′(如图12). 

探究1:在运动中,四边形CDHH能否为正方形?若能,

请求出此时t的值;若不能,请说明理由. 

探究2:在运动过程中,△ABC与直角梯形DEFH重叠

部分的面积为y,求yt的函数关系.? 

(09年湖南娄底25题解析)解:(1)∵AHAC=2∶3,AC=6 

AH=AC=×6=4 

又∵HFDE,∴HGCB,∴△AHG∽△ACB…………………………1分 

=,即=,∴HG=…………………………………2分 

SAHG=AH·HG=×4×=……………………………………3分 

(2)①能为正方形…………………………………………………………………4分

HH′∥CDHCHD,∴四边形CDHH为平行四边形 

又∠C=90°,∴四边形CDHH为矩形…………………………………5分

CH=AC-AH=6-4=2 

∴当CD=CH=2时,四边形CDHH为正方形 

此时可得t=2秒时,四边形CDHH为正方形…………………………6分 

②(Ⅰ)∵∠DEF=∠ABC,∴EFAB 

∴当t=4秒时,直角梯形的腰EFBA重合. 

当0≤t≤4时,重叠部分的面积为直角梯形DEFH的面积.…………7分 

FFMDEM=tanDEF=tanABC=== 

ME=FM=×2=HF=DM=DE-ME=4-= 

∴直角梯形DEFH′的面积为(4+)×2= 

y=………………………………………………………………8分 

(Ⅱ)∵当4<t≤5时,重叠部分的面积为四边形CBGH的面积-矩形CDHH的面积.…………………………………………………………9分 

S边形CBGH=SABC-SAHG=×8×6-=

S矩形CDHH?=2t 

y=-2t……………………………………………………………………10分 

(Ⅲ)当5t≤8时,如图,设HDAB

P. 

BD=8-t 

=tanABC= 

PD=DB=(8-t)………………11分      ∴重叠部分的面积y=S??

PDB=PD·DB 

=·(8-t)(8-t) 

=(8-t)2=t2-6t+24 

∴重叠部分面积yt的函数关系式: 

y=(0≤t≤4) 

-2t(4<t≤5) 

t2-6t+24(5t≤8)

(注:评分时,考生未作结论不扣分)?

试题详情

54.(09年湖南怀化)26. (本题满分10分)

如图12,在直角梯形OABC中, OACBAB两点的坐标分别为A(15,0),B(10,12),动点PQ分别从OB两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BCC运动,当点P停止运动时,点Q也同时停止运动.线段OBPQ相交于点D,过点DDEOA,交AB于点E,射线QE轴于点F.设动点PQ运动时间为t(单位:秒).

(1)当t为何值时,四边形PABQ是等腰梯形,请写出推理过程;

(2)当t=2秒时,求梯形OFBC的面积;

(3)当t为何值时,△PQF是等腰三角形?请写出推理过程.

 

(09年湖南怀化26题解析)解:(1)如图4,过B

······ (1分)

Q

························································································· (2分)

要使四边形PABQ是等腰梯形,则

(此时是平行四边形,不合题意,舍去)························· (3分)

(2)当时,

··············································· (4分)

···················································· (5分)

··································································· (6分)

(3)①当时,则

···························································································· (7分)

②当时,

······················································ (8分)

③当时, ········· (9分)

综上,当时,△PQF是等腰三角形.·············· (10分)

试题详情

53.(09年湖南衡阳)26、(本小题满分9分)

如图12,直线与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.

    (1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;

    (2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?

(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为,正方形OCMD与△AOB重叠部分的面积为S.试求S与的函数关系式并画出该函数的图象.

    (09年湖南衡阳26题解析)(1)设点M的横坐标为x,则点M的纵坐标为-x+4(0<x<4,x>0,-x+4>0);

           则:MC=∣-x+4∣=-x+4,MD=∣x∣=x;

           ∴C四边形OCMD=2(MC+MD)=2(-x+4+x)=8

∴当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8;

(2)根据题意得:S四边形OCMD=MC·MD=(-x+4)· x=-x2+4x=-(x-2)2+4

∴四边形OCMD的面积是关于点M的横坐标x(0<x<4)的二次函数,并且当x=2,即当点M运动到线段AB的中点时,四边形OCMD的面积最大且最大面积为4;

(3)如图10(2),当时,

如图10(3),当时,

∴S与的函数的图象如下图所示:

试题详情

52.(09年湖南郴州)27. 如图11,已知正比例函数和反比例函数的图像都经过点M(-2,),且P(,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是AB

(1)写出正比例函数和反比例函数的关系式;

(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;

(3)如图12,当点Q在第一象限中的双曲线上运动时,作以OPOQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.

 

(09年湖南郴州27题解析)(1)设正比例函数解析式为,将点M()坐标代入得,所以正比例函数解析式为 ······························································································ 2分

同样可得,反比例函数解析式为  ···························································· 3分

(2)当点Q在直线DO上运动时,

设点Q的坐标为, ················································································ 4分

于是

所以有,,解得  ········································································· 6分

所以点Q的坐标为 ······························································ 7分

(3)因为四边形OPCQ是平行四边形,所以OPCQOQPC

而点P()是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值.······························································································································ 8分

因为点Q在第一象限中双曲线上,所以可设点Q的坐标为

由勾股定理可得

所以当时,有最小值4,

又因为OQ为正值,所以OQ同时取得最小值,

所以OQ有最小值2. ····························································································· 9分

由勾股定理得OP,所以平行四边形OPCQ周长的最小值是

.······························································ 10分

试题详情

51.(09年湖南常德)26.如图9,若△ABC和△ADE为等边三角形,MN分别EBCD的中点,易证:CD=BE,△AMN是等边三角形.

  (1)当把△ADE绕A点旋转到图10的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;(4分)

  (2)当△ADE绕A点旋转到图11的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.(6分)

 

(09年湖南常德26题解析)解:(1)CD=BE.理由如下:  1分

     ∵△ABC和△ADE为等边三角形  

AB=ACAE=AD,∠BAC=EAD=60o

   ∵∠BAE =BACEAC =60oEAC

DAC =DAEEAC =60oEAC,   

∴∠BAE=DAC ∴△ABE ≌ △ACD·········································· 3分

     ∴CD=BE······························································· 4分

  (2)△AMN是等边三角形.理由如下:·························· 5分

     ∵△ABE ≌ △ACD,   ∴∠ABE=∠ACD

     ∵MN分别是BECD的中点,

     ∴BM=

     ∵AB=AC,∠ABE=ACD, ∴△ABM ≌ △ACN

     ∴AM=AN,∠MAB=NAC.··································· 6分

     ∴∠NAM=NAC+CAM=MAB+CAM=BAC=60o

     ∴△AMN是等边三角形.·········································· 7分

     设AD=aAB=2a

    ∵AD=AE=DEAB=AC   CE=DE

     ∵△ADE为等边三角形,  ∴∠DEC=120 o  ADE=60o

    ∴∠EDC=∠ECD=30o  ,   ∴∠ADC=90o.·················································· 8分

    ∴在Rt△ADC中,AD=a,∠ACD=30 o ,  ∴ CD=

NDC中点,

, ∴.························ 9分

∵△ADE,△ABC,△AMN为等边三角形,

SADESABC SAMN························ 10分

解法二:△AMN是等边三角形.理由如下:··································································· 5分

∵△ABE ≌ △ACDMN分别是BECN的中点,∴AM=ANNC=MB

AB=AC,∴△ABM ≌ △ACN,∴∠MAB=NAC  ,

∴∠NAM=NAC+CAM=MAB+CAM=BAC=60o

∴△AMN是等边三角形··························································································· 7分

AD=aAD=AE=DE= aAB=BC=AC=2a

易证BEAC,∴BE=

  ∴

∵△ADE,△ABC,△AMN为等边三角形

   ∴SADESABC SAMN···························· 10分

试题详情


同步练习册答案