题目列表(包括答案和解析)
60.(09年吉林长春)26.如图,直线分别与x轴、y轴交于A、B两点;直线与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).
(1)求点C的坐标.(1分)
(2)当0<t<5时,求S与t之间的函数关系式.(4分)
(3)求(2)中S的最大值.(2分)
(4)当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.(3分)
[参考公式:二次函数y=ax2+bx+c图象的顶点坐标为().]
(09年吉林长春26题解析)解:(1)由题意,得解得
∴C(3,). (1分)
(2)根据题意,得AE=t,OE=8-t.
∴点Q的纵坐标为(8-t),点P的纵坐标为t,
∴PQ= (8-t)-t=10-2t.
当MN在AD上时,10-2t=t,∴t=. (3分)
当0<t≤时,S=t(10-2t),即S=-2t2+10t.
当≤t<5时,S=(10-2t)2,即S=4t2-40t+100. (5分)
(3)当0<t≤时,S=-2(t-)2+,∴t=时,S最大值=.
当≤t<5时,S=4(t-5)2,∵t<5时,S随t的增大而减小,
∴t=时,S最大值=.
∵>,∴S的最大值为. (7分)
(4)4<t<或t>6. (10分)
59.(09年湖南株洲)23.(本题满分12分)如图,已知为直角三角形,,,点、在轴上,点坐标为(,)(),线段与轴相交于点,以(1,0)为顶点的抛物线过点、.
(1)求点的坐标(用表示);
(2)求抛物线的解析式;
(3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结 并延长交于点,试证明:为定值.
(09年湖南株洲23题解析)(1)由可知,,又△ABC为等腰直角三角形,∴,,所以点A的坐标是(). ………………… 3分
(2)∵ ∴,则点的坐标是().
又抛物线顶点为,且过点、,所以可设抛物线的解析式为:,得:
解得 ∴抛物线的解析式为 ………7分
(3)过点作于点,过点作于点,设点的坐标是,则,.
∵ ∴∽ ∴ 即,得
∵ ∴∽ ∴ 即,得
又∵
∴
即为定值8. ……………………12分
57.(09年湖南湘西自治州)25.(本题20分)在直角坐标系xoy中,抛物线与x轴交于两点A、B,与y轴交于点C,其中A在B的左侧,B的坐标是(3,0).将直线沿y轴向上平移3个单位长度后恰好经过点B、C.
(1) 求k的值;
(2) 求直线BC和抛物线的解析式;
(3) 求△ABC的面积;
(4) 设抛物线顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标.
(09年湖南湘西自治州25题解析)解(1)直线沿y轴向上平移3个单位后,过两点B,C
从而可设直线BC的方程为············································································ 2分
令,得C(0,3)································································································ 3分
又B(3,0)在直线上,
∴
∴······················································································································ 5分
(2)由(1),直线BC的方程为·································································· 7分
又抛物线过点B,C
∴
∴抛物线方程为··················································································· 10分
(3)由(2),令
得·········································································································· 12分
即A(1,0),B(3,0),而C(0,3)
∴△ABC的面积S△ABC=(3-1)·3=3平方单位··························································· 15分
(4)由(2),D(2,),设对称轴与x轴交于点F,与BC交于E,可得E(2,1),
连结AE.
∵
∴AE⊥CE,且AE=,CE=
(或先作垂线AE⊥BC,再计算也可)
在Rt△AFP与Rt△AEC中,
∵∠ACE=∠APE(已知)
∴ 即=
∴······································································ 18分
∴点P的坐标为(2,2)或(2,)·························· 20分
(x轴上、下方各一个)
(注:只有一个点扣1分)
56.(09年湖南邵阳)25、如图(十二)直线l的解析式为y=-x+4, 它与x轴、y轴分
相交于A、B两点,平行于直线l的直线m从原点O出发,沿x
轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别
相交于M、N两点,运动时间为t秒(0<t≤4)
(1)求A、B两点的坐标;
(2)用含t的代数式表示△MON的面积S1;
(3)以MN为对角线作矩形OMPN,记 △MPN和△OAB重合部分的面积为S2 ;
当2<t≤4时,试探究S2 与之间的函数关系;
|
(09年湖南邵阳25题解析)(1)当时,;当时,.; 2分
(2),;···· 4分
(3)①当时,易知点在的外面,则点的坐标为,
点的坐标满足即,
同理,则,··················································· 6分
所以
;··································· 8分
②当时,,
解得两个都不合题意,舍去;··········································· 10分
当时,,解得,
综上得,当或时,为的面积的.·········································· 12分
注:解答题用其它方法解答,请参照评分.
55.(09年湖南娄底)25.(本小题12分)如图11,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH
(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个
单位的速度沿CB方向向右移动,直到点D与点B
重合时停止,设运动的时间为t秒,运动后的直角梯
形为DEFH′(如图12).
探究1:在运动中,四边形CDH′H能否为正方形?若能,
请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠
部分的面积为y,求y与t的函数关系.?
(09年湖南娄底25题解析)解:(1)∵AH∶AC=2∶3,AC=6
∴AH=AC=×6=4
又∵HF∥DE,∴HG∥CB,∴△AHG∽△ACB…………………………1分
∴=,即=,∴HG=…………………………………2分
∴S△AHG=AH·HG=×4×=……………………………………3分
(2)①能为正方形…………………………………………………………………4分
∵HH′∥CD,HC∥H′D,∴四边形CDH′H为平行四边形
又∠C=90°,∴四边形CDH′H为矩形…………………………………5分
又CH=AC-AH=6-4=2
∴当CD=CH=2时,四边形CDH′H为正方形
此时可得t=2秒时,四边形CDH′H为正方形…………………………6分
②(Ⅰ)∵∠DEF=∠ABC,∴EF∥AB
∴当t=4秒时,直角梯形的腰EF与BA重合.
当0≤t≤4时,重叠部分的面积为直角梯形DEFH′的面积.…………7分
过F作FM⊥DE于M,=tan∠DEF=tan∠ABC===
∴ME=FM=×2=,HF=DM=DE-ME=4-=
∴直角梯形DEFH′的面积为(4+)×2=
∴y=………………………………………………………………8分
(Ⅱ)∵当4<t≤5时,重叠部分的面积为四边形CBGH的面积-矩形CDH′H的面积.…………………………………………………………9分
而S边形CBGH=S△ABC-S△AHG=×8×6-=
S矩形CDH′H?=2t
∴y=-2t……………………………………………………………………10分
(Ⅲ)当5<t≤8时,如图,设H′D交AB
于P.
BD=8-t
又=tan∠ABC=
∴PD=DB=(8-t)………………11分 ∴重叠部分的面积y=S??
△PDB=PD·DB
=·(8-t)(8-t)
=(8-t)2=t2-6t+24
∴重叠部分面积y与t的函数关系式:
y=(0≤t≤4)
-2t(4<t≤5)
t2-6t+24(5<t≤8)
(注:评分时,考生未作结论不扣分)?
54.(09年湖南怀化)26. (本题满分10分)
如图12,在直角梯形OABC中, OA∥CB,A、B两点的坐标分别为A(15,0),B(10,12),动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q也同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交轴于点F.设动点P、Q运动时间为t(单位:秒).
(1)当t为何值时,四边形PABQ是等腰梯形,请写出推理过程;
(2)当t=2秒时,求梯形OFBC的面积;
(3)当t为何值时,△PQF是等腰三角形?请写出推理过程.
(09年湖南怀化26题解析)解:(1)如图4,过B作
则······ (1分)
过Q作
则
························································································· (2分)
要使四边形PABQ是等腰梯形,则,
即
或(此时是平行四边形,不合题意,舍去)························· (3分)
(2)当时,。
··············································· (4分)
···················································· (5分)
··································································· (6分)
(3)①当时,则
···························································································· (7分)
②当时,
即······················································ (8分)
③当时, ········· (9分)
综上,当时,△PQF是等腰三角形.·············· (10分)
53.(09年湖南衡阳)26、(本小题满分9分)
如图12,直线与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;
(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?
(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为,正方形OCMD与△AOB重叠部分的面积为S.试求S与的函数关系式并画出该函数的图象.
(09年湖南衡阳26题解析)(1)设点M的横坐标为x,则点M的纵坐标为-x+4(0<x<4,x>0,-x+4>0);
则:MC=∣-x+4∣=-x+4,MD=∣x∣=x;
∴C四边形OCMD=2(MC+MD)=2(-x+4+x)=8
∴当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8;
(2)根据题意得:S四边形OCMD=MC·MD=(-x+4)· x=-x2+4x=-(x-2)2+4
∴四边形OCMD的面积是关于点M的横坐标x(0<x<4)的二次函数,并且当x=2,即当点M运动到线段AB的中点时,四边形OCMD的面积最大且最大面积为4;
(3)如图10(2),当时,;
如图10(3),当时,;
∴S与的函数的图象如下图所示:
52.(09年湖南郴州)27. 如图11,已知正比例函数和反比例函数的图像都经过点M(-2,),且P(,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图12,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
(09年湖南郴州27题解析)(1)设正比例函数解析式为,将点M(,)坐标代入得,所以正比例函数解析式为 ······························································································ 2分
同样可得,反比例函数解析式为 ···························································· 3分
(2)当点Q在直线DO上运动时,
设点Q的坐标为, ················································································ 4分
于是,
而,
所以有,,解得 ········································································· 6分
所以点Q的坐标为和 ······························································ 7分
(3)因为四边形OPCQ是平行四边形,所以OP=CQ,OQ=PC,
而点P(,)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值.······························································································································ 8分
因为点Q在第一象限中双曲线上,所以可设点Q的坐标为,
由勾股定理可得,
所以当即时,有最小值4,
又因为OQ为正值,所以OQ与同时取得最小值,
所以OQ有最小值2. ····························································································· 9分
由勾股定理得OP=,所以平行四边形OPCQ周长的最小值是
.······························································ 10分
51.(09年湖南常德)26.如图9,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.
(1)当把△ADE绕A点旋转到图10的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;(4分)
(2)当△ADE绕A点旋转到图11的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.(6分)
(09年湖南常德26题解析)解:(1)CD=BE.理由如下: 1分
∵△ABC和△ADE为等边三角形
∴AB=AC,AE=AD,∠BAC=∠EAD=60o
∵∠BAE =∠BAC-∠EAC =60o-∠EAC,
∠DAC =∠DAE-∠EAC =60o-∠EAC,
∴∠BAE=∠DAC, ∴△ABE ≌ △ACD·········································· 3分
∴CD=BE······························································· 4分
(2)△AMN是等边三角形.理由如下:·························· 5分
∵△ABE ≌ △ACD, ∴∠ABE=∠ACD.
∵M、N分别是BE、CD的中点,
∴BM=
∵AB=AC,∠ABE=∠ACD, ∴△ABM ≌ △ACN.
∴AM=AN,∠MAB=∠NAC.··································· 6分
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60o
∴△AMN是等边三角形.·········································· 7分
设AD=a,则AB=2a.
∵AD=AE=DE,AB=AC, ∴CE=DE.
∵△ADE为等边三角形, ∴∠DEC=120 o, ∠ADE=60o,
∴∠EDC=∠ECD=30o , ∴∠ADC=90o.·················································· 8分
∴在Rt△ADC中,AD=a,∠ACD=30 o , ∴ CD=.
∵N为DC中点,
∴, ∴.························ 9分
∵△ADE,△ABC,△AMN为等边三角形,
∴S△ADE∶S△ABC∶ S△AMN························ 10分
解法二:△AMN是等边三角形.理由如下:··································································· 5分
∵△ABE ≌ △ACD,M、N分别是BE、CN的中点,∴AM=AN,NC=MB.
∵AB=AC,∴△ABM ≌ △ACN,∴∠MAB=∠NAC ,
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60o
∴△AMN是等边三角形··························································································· 7分
设AD=a,则AD=AE=DE= a,AB=BC=AC=2a
易证BE⊥AC,∴BE=,
∴ ∴
∵△ADE,△ABC,△AMN为等边三角形
∴S△ADE∶S△ABC∶ S△AMN···························· 10分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com