题目列表(包括答案和解析)
30.(09年贵州黔东南州)26、(12分)已知二次函数。
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点。
(2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式。
(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由。
(09年贵州黔东南州26题解析)解(1)因为△=
所以不论a为何实数,此函数图象与x轴总有两个交点。…………(2分)
(2)设x1、x2是的两个根,则,,因两交点的距离是,所以。…………(4分)
即:
变形为:……………………………………(5分)
所以:
整理得:
解方程得:
又因为:a<0
所以:a=-1
所以:此二次函数的解析式为…………………………(6分)
(3)设点P的坐标为,因为函数图象与x轴的两个交点间的距离等于,所以:AB=……………………………………………………………………(8分)
所以:S△PAB=
所以:
即:,则…………………………………(10分)
当时,,即
解此方程得:=-2或3
当时,,即
解此方程得:=0或1……………………………………(11分)
综上所述,所以存在这样的P点,P点坐标是(-2,3), (3,3), (0, -3)或(1, -3)。…(12分)
29.(09年广西梧州)26.(本题满分12分)
如图(9)-1,抛物线经过A(,0),C(3,)两点,与轴交于点D,与轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线将四边形ABCD面积二等分,求的值;
(3)如图(9)-2,过点E(1,1)作EF⊥轴于点F,将△AEF绕平面内某点旋转180°得△MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,作MG⊥轴于点G,若线段MG︰AG=1︰2,求点M,N的坐标.
(09年广西梧州26题解析)(1)解:把A(,0),C(3,)代入抛物线 得
················································································· 1分
整理得
……………… 2分 解得………………3分
∴抛物线的解析式为 ··································································· 4分
(2)令 解得
∴ B点坐标为(4,0)
又∵D点坐标为(0,) ∴AB∥CD ∴四边形ABCD是梯形.
∴S梯形ABCD =···························· 5分
设直线与x轴的交点为H,
与CD的交点为T,
则H(,0), T(,)··················· 6分
∵直线将四边形ABCD面积二等分
∴S梯形AHTD =S梯形ABCD=4
∴····································· 7分
∴···························································· 8分
(3)∵MG⊥轴于点G,线段MG︰AG=1︰2
∴设M(m,),········································ 9分
∵点M在抛物线上 ∴
解得(舍去) ···························· 10分
∴M点坐标为(3,)····················································································· 11分
根据中心对称图形性质知,MQ∥AF,MQ=AF,NQ=EF,
∴N点坐标为(1,) ···················································································· 12分
28.(09年广西钦州)26.(本题满分10分)
如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为(-1,0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是_▲_,b=_▲_,c=_▲_;
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
(09年广西钦州26题解析)解:(1)(0,-3),b=-,c=-3.·························· 3分
(2)由(1),得y=x2-x-3,它与x轴交于A,B两点,得B(4,0).
∴OB=4,又∵OC=3,∴BC=5.
由题意,得△BHP∽△BOC,
∵OC∶OB∶BC=3∶4∶5,
∴HP∶HB∶BP=3∶4∶5,
∵PB=5t,∴HB=4t,HP=3t.
∴OH=OB-HB=4-4t.
由y=x-3与x轴交于点Q,得Q(4t,0).
∴OQ=4t.··························································································· 4分
①当H在Q、B之间时,
QH=OH-OQ
=(4-4t)-4t=4-8t.································································ 5分
②当H在O、Q之间时,
QH=OQ-OH
=4t-(4-4t)=8t-4.································································ 6分
综合①,②得QH=|4-8t|;······························································· 6分
(3)存在t的值,使以P、H、Q为顶点的三角形与△COQ相似.··················· 7分
①当H在Q、B之间时,QH=4-8t,
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得=,
∴t=.···························································································· 7分
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得=,
即t2+2t-1=0.
∴t1=-1,t2=--1(舍去).················································· 8分
②当H在O、Q之间时,QH=8t-4.
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得=,
∴t=.···························································································· 9分
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得=,
即t2-2t+1=0.
∴t1=t2=1(舍去).·········································································· 10分
综上所述,存在的值,t1=-1,t2=,t3=.························ 10分
27.(09年广西南宁)26.如图14,要设计一个等腰梯形的花坛,花坛上底长米,下底长米,上下底相距米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为米.
(1)用含的式子表示横向甬道的面积;
(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;
(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?
(09年广西南宁26题解析)解:(1)横向甬道的面积为:·· 2分
(2)依题意:·············································· 4分
整理得:
(不符合题意,舍去)······································································· 6分
甬道的宽为5米.
(3)设建设花坛的总费用为万元.
············································ 7分
当时,的值最小.··························································· 8分
因为根据设计的要求,甬道的宽不能超过6米,
米时,总费用最少.······················································································ 9分
最少费用为:万元·················································· 10分
26.(09年广西柳州)26.(本题满分10分)
如图11,已知抛物线()与轴的一个交点为,与y轴的负半轴交于点C,顶点为D.
(1)直接写出抛物线的对称轴,及抛物线与轴的另一个交点A的坐标;
(2)以AD为直径的圆经过点C.
①求抛物线的解析式;
②点在抛物线的对称轴上,点在抛物线上,且以四点为顶点的四边形为平行四边形,求点的坐标.
(09年广西柳州26题解析)解:(1)对称轴是直线:,
点A的坐标是(3,0).···························································· 2分
(说明:每写对1个给1分,“直线”两字没写不扣分)
(2)如图11,连接AC、AD,过D作于点M,
解法一:利用
∵点A、D、C的坐标分别是A (3,0),D(1,)、
C(0,),
∴AO=3,MD=1.
由得
∴ ··························································································· 3分
又∵······························································ 4分
∴由 得 ································································ 5分
∴函数解析式为: ······················································ 6分
解法二:利用以AD为直径的圆经过点C
∵点A、D的坐标分别是A (3,0) 、D(1,)、C(0,),
∴,,
∵
∴…① ·············································································· 3分
又∵…② ···················································· 4分
由①、②得 ·································································· 5分
∴函数解析式为: ··························································· 6分
(3)如图所示,当BAFE为平行四边形时
则∥,并且=.
∵=4,∴=4
由于对称为,
∴点F的横坐标为5.·············································· 7分
将代入得,
∴F(5,12). ······················································· 8分
根据抛物线的对称性可知,在对称轴的左侧抛物线上也存在点F,使得四边形BAEF是平行四边形,此时点F坐标为(,12). ··································································· 9分
当四边形BEAF是平行四边形时,点F即为点D,
此时点F的坐标为(1,). ································· 10分
综上所述,点F的坐标为(5,12), (,12)或(1,).
(其它解法参照给分)
25.(09年广西贺州)28.(本题满分10分)如图,抛物线的顶点为A,与y 轴交于点B.
(1)求点A、点B的坐标.
(2)若点P是x轴上任意一点,求证:.
(3)当最大时,求点P的坐标.
(09年广西贺州28题解析)解:(1)抛物线与y轴的交于点B,
令x=0得y=2.
∴B(0,2) ············································· 1分
∵
∴A(-2,3)··········································· 3分
(2)当点P是 AB的延长线与x轴交点时,
.············································· 5分
当点P在x轴上又异于AB的延长线与x轴的交点时,
在点P、A、B构成的三角形中,.
综合上述: ················································································ 7分
(3)作直线AB交x轴于点P,由(2)可知:当PA-PB最大时,点P是所求的点 ····· 8分
作AH⊥OP于H.
∵BO⊥OP,
∴△BOP∽△AHP
∴ ····································································································· 9分
由(1)可知:AH=3、OH=2、OB=2,
∴OP=4,故P(4,0) ··················································································· 10分
注:求出AB所在直线解析式后再求其与x轴交点P(4,0)等各种方法只要正确也相应给分.
2.第19题至第25题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.
2.求S2的值时,还可进行如下变形:
S2= S△PEF-S△OEF=S△PEF-(S四边形PEOF-S△PEF)=2 S△PEF-S四边形PEOF,再利用第(1)题中的结论.
注意:1.按照评分标准分步评分,不得随意变更给分点;
48.(09年湖北孝感)25.(本题满分12分)
如图,点P是双曲线上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y= (0<k2<|k1|)于E、F两点.
(1)图1中,四边形PEOF的面积S1= ▲ (用含k1、k2的式子表示);(3分)
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;(4分)
②记,S2是否有最小值?若有,求出其最小值;若没有,请说明理由.(5分)
(09年湖北孝感25题解析)解:(1); … ………………………3分
(2)①EF∥AB. ……………………………………4分
证明:如图,由题意可得A(–4,0),B(0,3),, .
∴PA=3,PE=,PB=4,PF=.
∴,
∴. ………………………… 6分
又∵∠APB=∠EPF.
∴△APB ∽△EPF,∴∠PAB=∠PEF.
∴EF∥AB. …………………………… 7分
②S2没有最小值,理由如下:
过E作EM⊥y轴于点M,过F作FN⊥x轴于点N,两线交于点Q.
由上知M(0,),N(,0),Q(,). ……………… 8分
而S△EFQ= S△PEF,
∴S2=S△PEF-S△OEF=S△EFQ-S△OEF=S△EOM+S△FON+S矩形OMQN
=
=
=. ………………………… 10分
当时,S2的值随k2的增大而增大,而0<k2<12. …………… 11分
∴0<S2<24,s2没有最小值. …………………………… 12分
说明:1.证明AB∥EF时,还可利用以下三种方法.方法一:分别求出经过A、B两点和经过E、F两点的直线解析式,利用这两个解析式中x的系数相等来证明AB∥EF;方法二:利用=来证明AB∥EF;方法三:连接AF、BE,利用S△AEF=S△BFE得到点A、点B到直线EF的距离相等,再由A、B两点在直线EF同侧可得到AB∥EF.
47.(09年湖北襄樊)26.(本小题满分13分)
如图13,在梯形中,点是的中点,是等边三角形.
(1)求证:梯形是等腰梯形;
(2)动点、分别在线段和上运动,且保持不变.设求与的函数关系式;
(3)在(2)中:①当动点、运动到何处时,以点、和点、、、中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当取最小值时,判断的形状,并说明理由.
(09年湖北襄樊26题解析)(1)证明:∵是等边三角形
∴·········· 1分
∵是中点
∴
∵
∴
∴·························· 2分
∴
∴梯形是等腰梯形.································································· 3分
(2)解:在等边中,
∴
∴······················································································· 4分
∴ ∴······························································ 5分
∵ ∴·········································· 6分
∴ ∴··································································· 7分
(3)解:①当时,则有
则四边形和四边形均为平行四边形
∴··························································· 8分
当时,则有
则四边形和四边形均为平行四边形
∴······························································ 9分
∴当或时,以P、M和A、B、C、 D中的两个点为顶点的四边形是平行四边形.
此时平行四边形有4个.····································································· 10分
②为直角三角形····································································· 11分
∵
∴当取最小值时,························································ 12分
∴是的中点,而
∴∴······················································ 13分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com