题目列表(包括答案和解析)

 0  87251  87259  87265  87269  87275  87277  87281  87287  87289  87295  87301  87305  87307  87311  87317  87319  87325  87329  87331  87335  87337  87341  87343  87345  87346  87347  87349  87350  87351  87353  87355  87359  87361  87365  87367  87371  87377  87379  87385  87389  87391  87395  87401  87407  87409  87415  87419  87421  87427  87431  87437  87445  447348 

30.(09年贵州黔东南州)26、(12分)已知二次函数

(1)求证:不论a为何实数,此函数图象与x轴总有两个交点。

(2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式。

(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由。

(09年贵州黔东南州26题解析)解(1)因为△=

所以不论a为何实数,此函数图象与x轴总有两个交点。…………(2分)

(2)设x1、x2的两个根,则,因两交点的距离是,所以。…………(4分)

即:

变形为:……………………………………(5分)

所以:

整理得:

解方程得:

又因为:a<0

所以:a=-1

所以:此二次函数的解析式为…………………………(6分)

(3)设点P的坐标为,因为函数图象与x轴的两个交点间的距离等于,所以:AB=……………………………………………………………………(8分)

所以:SPAB=

所以:

即:,则…………………………………(10分)

时,,即

解此方程得:=-2或3

时,,即

解此方程得:=0或1……………………………………(11分)

综上所述,所以存在这样的P点,P点坐标是(-2,3), (3,3), (0, -3)或(1, -3)。…(12分)

试题详情

29.(09年广西梧州)26.(本题满分12分)

如图(9)-1,抛物线经过A(,0),C(3,)两点,与轴交于点D,与轴交于另一点B

(1)求此抛物线的解析式;

(2)若直线将四边形ABCD面积二等分,求的值;

(3)如图(9)-2,过点E(1,1)作EF轴于点F,将△AEF绕平面内某点旋转180°得△MNQ(点MNQ分别与点AEF对应),使点MN在抛物线上,作MG轴于点G,若线段MGAG=1︰2,求点MN的坐标.

 

(09年广西梧州26题解析)(1)解:把A(,0),C(3,)代入抛物线  得

    ················································································· 1分

  整理得

   ……………… 2分       解得………………3分

  ∴抛物线的解析式为 ··································································· 4分

  (2)令   解得

  ∴ B点坐标为(4,0)

  又∵D点坐标为(0,) ∴ABCD  ∴四边形ABCD是梯形.

  ∴S梯形ABCD ···························· 5分

设直线x轴的交点为H

CD的交点为T

H(,0),  T()··················· 6分

∵直线将四边形ABCD面积二等分

∴S梯形AHTD S梯形ABCD=4

····································· 7分 

···························································· 8分

(3)∵MG轴于点G,线段MGAG=1︰2

   ∴设M(m),········································ 9分 

∵点M在抛物线上   ∴ 

解得(舍去) ···························· 10分

M点坐标为(3,)····················································································· 11分

根据中心对称图形性质知,MQAFMQAFNQEF

N点坐标为(1,) ···················································································· 12分

试题详情

28.(09年广西钦州)26.(本题满分10分)

如图,已知抛物线yx2+bx+c与坐标轴交于ABC三点, A点的坐标为(-1,0),过点C的直线yx-3与x轴交于点Q,点P是线段BC上的一个动点,过PPHOB于点H.若PB=5t,且0<t<1.

(1)填空:点C的坐标是_▲_b_▲_c_▲_

(2)求线段QH的长(用含t的式子表示);

(3)依点P的变化,是否存在t的值,使以PHQ为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.

(09年广西钦州26题解析)解:(1)(0,-3),b=-c=-3.·························· 3分

(2)由(1),得yx2x-3,它与x轴交于AB两点,得B(4,0).

OB=4,又∵OC=3,∴BC=5.

由题意,得△BHP∽△BOC

OCOBBC=3∶4∶5,

HPHBBP=3∶4∶5,

PB=5t,∴HB=4tHP=3t

OHOBHB=4-4t

yx-3与x轴交于点Q,得Q(4t,0).

OQ=4t.··························································································· 4分

①当HQB之间时,

QHOHOQ

=(4-4t)-4t=4-8t.································································ 5分

②当HOQ之间时,

QHOQOH

=4t-(4-4t)=8t-4.································································ 6分

综合①,②得QH=|4-8t|;······························································· 6分

(3)存在t的值,使以PHQ为顶点的三角形与△COQ相似.··················· 7分

①当HQB之间时,QH=4-8t

若△QHP∽△COQ,则QHCOHPOQ,得

t.···························································································· 7分

若△PHQ∽△COQ,则PHCOHQOQ,得

t2+2t-1=0.

t1-1,t2=--1(舍去).················································· 8分

②当HOQ之间时,QH=8t-4.

若△QHP∽△COQ,则QHCOHPOQ,得

t.···························································································· 9分

若△PHQ∽△COQ,则PHCOHQOQ,得

t2-2t+1=0.

t1t2=1(舍去).·········································································· 10分

综上所述,存在的值,t1-1,t2t3.························ 10分

试题详情

27.(09年广西南宁)26.如图14,要设计一个等腰梯形的花坛,花坛上底长米,下底长米,上下底相距米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为米.

(1)用含的式子表示横向甬道的面积;

(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;

(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?

 

(09年广西南宁26题解析)解:(1)横向甬道的面积为:·· 2分

(2)依题意:·············································· 4分

整理得:

(不符合题意,舍去)······································································· 6分

甬道的宽为5米.

(3)设建设花坛的总费用为万元.

············································ 7分

时,的值最小.··························································· 8分

因为根据设计的要求,甬道的宽不能超过6米,

米时,总费用最少.······················································································ 9分

最少费用为:万元·················································· 10分

试题详情

26.(09年广西柳州)26.(本题满分10分)

如图11,已知抛物线()与轴的一个交点为,与y轴的负半轴交于点C,顶点为D

(1)直接写出抛物线的对称轴,及抛物线与轴的另一个交点A的坐标;

(2)以AD为直径的圆经过点C

①求抛物线的解析式;

②点在抛物线的对称轴上,点在抛物线上,且以四点为顶点的四边形为平行四边形,求点的坐标.

 

(09年广西柳州26题解析)解:(1)对称轴是直线:

A的坐标是(3,0).···························································· 2分

(说明:每写对1个给1分,“直线”两字没写不扣分)

(2)如图11,连接ACAD,过D于点M

解法一:利用

∵点ADC的坐标分别是A (3,0),D(1,)

C(0),

AO=3,MD=1.

··························································································· 3分

又∵······························································ 4分

∴由  ································································ 5分

∴函数解析式为:  ······················································ 6分

   解法二:利用以AD为直径的圆经过点C

∵点AD的坐标分别是A (3,0) 、D(1,)、C(0,),

…①   ·············································································· 3分

又∵…②  ···················································· 4分

由①、②得   ·································································· 5分

∴函数解析式为: ··························································· 6分

(3)如图所示,当BAFE为平行四边形时

      则,并且

      ∵=4,∴=4             

由于对称为

∴点F的横坐标为5.·············································· 7分

代入

F(5,12).  ······················································· 8分

根据抛物线的对称性可知,在对称轴的左侧抛物线上也存在点F,使得四边形BAEF是平行四边形,此时点F坐标为(,12). ··································································· 9分

当四边形BEAF是平行四边形时,点F即为点D

此时点F的坐标为(1,).  ································· 10分

综上所述,点F的坐标为(5,12), (,12)或(1,).

(其它解法参照给分)

试题详情

25.(09年广西贺州)28.(本题满分10分)如图,抛物线的顶点为A,与y 轴交于点B

(1)求点A、点B的坐标.

(2)若点Px轴上任意一点,求证:

(3)当最大时,求点P的坐标.      

(09年广西贺州28题解析)解:(1)抛物线y轴的交于点B,

x=0得y=2.

B(0,2) ············································· 1分

     ∵

A(-2,3)··········································· 3分

(2)当点PAB的延长线与x轴交点时,

.············································· 5分

当点Px轴上又异于AB的延长线与x轴的交点时,

在点PAB构成的三角形中,

综合上述: ················································································ 7分

(3)作直线ABx轴于点P,由(2)可知:当PA-PB最大时,点P是所求的点 ····· 8分

AHOPH

BOOP

∴△BOP∽△AHP

   ∴  ····································································································· 9分

由(1)可知:AH=3、OH=2、OB=2,

OP=4,故P(4,0)  ··················································································· 10分

注:求出AB所在直线解析式后再求其与x轴交点P(4,0)等各种方法只要正确也相应给分.

试题详情

2.第19题至第25题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.

试题详情

2.求S2的值时,还可进行如下变形:

S2 SPEFSOEFSPEF-(S四边形PEOFSPEF)=2 SPEFS四边形PEOF,再利用第(1)题中的结论.

注意:1.按照评分标准分步评分,不得随意变更给分点;

试题详情

48.(09年湖北孝感)25.(本题满分12分)

如图,点P是双曲线上一动点,过点Px轴、y轴的垂线,分别交x轴、y轴于AB两点,交双曲线y= (0<k2<|k1|)于EF两点.

(1)图1中,四边形PEOF的面积S1=      (用含k1k2的式子表示);(3分)

(2)图2中,设P点坐标为(-4,3).

①判断EFAB的位置关系,并证明你的结论;(4分)

②记S2是否有最小值?若有,求出其最小值;若没有,请说明理由.(5分)

(09年湖北孝感25题解析)解:(1);             … ………………………3分

(2)①EFAB.          ……………………………………4分

证明:如图,由题意可得A(–4,0),B(0,3),

PA=3,PE=PB=4,PF=

.    ………………………… 6分

又∵∠APB=∠EPF

∴△APB ∽△EPF,∴∠PAB=∠PEF

EFAB.     …………………………… 7分

S2没有最小值,理由如下:

EEMy轴于点M,过FFNx轴于点N,两线交于点Q

由上知M(0,),N(,0),Q().   ……………… 8分

SEFQ= SPEF

S2SPEFSOEFSEFQSOEFSEOM+SFON+S矩形OMQN

=.            ………………………… 10分

时,S2的值随k2的增大而增大,而0<k2<12.  …………… 11分

∴0<S2<24,s2没有最小值.        …………………………… 12分

说明:1.证明ABEF时,还可利用以下三种方法.方法一:分别求出经过AB两点和经过EF两点的直线解析式,利用这两个解析式中x的系数相等来证明ABEF;方法二:利用来证明ABEF;方法三:连接AFBE利用SAEFSBFE得到点AB到直线EF的距离相等,再由AB两点在直线EF同侧可得到ABEF

试题详情

47.(09年湖北襄樊)26.(本小题满分13分)

如图13,在梯形中,的中点,是等边三角形.

  (1)求证:梯形是等腰梯形;

  (2)动点分别在线段上运动,且保持不变.设的函数关系式;

  (3)在(2)中:①当动点运动到何处时,以点和点中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;

②当取最小值时,判断的形状,并说明理由.

 

(09年湖北襄樊26题解析)(1)证明:∵是等边三角形

·········· 1分

中点

·························· 2分

∴梯形是等腰梯形.································································· 3分

(2)解:在等边中,

······················································································· 4分

······························································ 5分

·········································· 6分

  ∴··································································· 7分

(3)解:①当时,则有

则四边形和四边形均为平行四边形

··························································· 8分

时,则有

则四边形和四边形均为平行四边形

······························································ 9分

∴当时,以PMABC D中的两个点为顶点的四边形是平行四边形.

此时平行四边形有4个.····································································· 10分

为直角三角形····································································· 11分

∴当取最小值时,························································ 12分

的中点,

······················································ 13分

试题详情


同步练习册答案