题目列表(包括答案和解析)
2.(09年福建龙岩)26.(14分)如图,抛物线与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连结BC、AD.
(1)求C点的坐标及抛物线的解析式;
(2)将△BCH绕点B按顺时针旋转90°后 再沿x轴对折得到
△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;
(3)设过点E的直线交AB边于点P,交CD边于点Q. 问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由.
(09年福建龙岩26题解析)解:(1)∵四边形OBHC为矩形,∴CD∥AB,
又D(5,2),
∴C(0,2),OC=2 . …………………………… 2分
∴ 解得
∴抛物线的解析式为: …… 4分
(2)点E落在抛物线上. 理由如下:……… 5分
由y = 0,得.
解得x1=1,x2=4. ∴A(4,0),B(1,0). ……………………………… 6分
∴OA=4,OB=1.
由矩形性质知:CH=OB=1,BH=OC=2,∠BHC=90°,
由旋转、轴对称性质知:EF=1,BF=2,∠EFB=90°,
∴点E的坐标为(3,-1). ………………………………………………… 7分
把x=3代入,得,
∴点E在抛物线上. …………………………………………………………… 8分
(3)法一:存在点P(a,0),延长EF交CD于点G,易求OF=CG=3,PB=a-1.
S梯形BCGF = 5,S梯形ADGF = 3,记S梯形BCQP = S1,S梯形ADQP = S2,
下面分两种情形:
①当S1∶S2 =1∶3时,,
此时点P在点F(3,0)的左侧,则PF = 3-a,
由△EPF∽△EQG,得,则QG=9-3a,
∴CQ=3-(9-3a) =3a -6
由S1=2,得,解得;………………… 11分
②当S1∶S2=3∶1时,
此时点P在点F(3,0)的右侧,则PF = a-3,
由△EPF∽△EQG,得QG = 3a-9,∴CQ = 3 +(3 a-9)= 3 a-6,
由S1= 6,得,解得.
综上所述:所求点P的坐标为(,0)或(,0)……… 14分
法二:存在点P(a,0). 记S梯形BCQP = S1,S梯形ADQP = S2,易求S梯形ABCD = 8.
当PQ经过点F(3,0)时,易求S1=5,S2 = 3,
此时S1∶S2不符合条件,故a≠3.
设直线PQ的解析式为y = kx+b(k≠0),则,解得,
∴. 由y = 2得x = 3a-6,∴Q(3a-6,2) ……… 10分
∴CQ = 3a-6,BP = a-1,.
下面分两种情形:
①当S1∶S2 = 1∶3时,= 2;
∴4a-7 = 2,解得;……………………………………………… 12分
②当S1∶S2 = 3∶1时,;
∴4a-7 = 6,解得;
综上所述:所求点P的坐标为(,0)或(,0)………… 14分
[说明:对于第(3)小题,只要考生能求出或两个答案,就给6分. ]
1.(09年安徽)23.已知某种水果的批发单价与批发量的函数关系如图(1)所示.
(1)请说明图中①、②两段函数图象的实际意义.
[解]
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的
函数关系式;在下图的坐标系中画出该函数图象;指出金额在什
么范围内,以同样的资金可以批发到较多数量的该种水果.
[解]
(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函
数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,
且当日零售价不变,请你帮助该经销商设计进货和销售的方案,
使得当日获得的利润最大.
[解]
(09年安徽23题解析)(1)解:图①表示批发量不少于20kg且不多于60kg的该种水果,
可按5元/kg批发;……3分
图②表示批发量高于60kg的该种水果,可按4元/kg批发.
………………………………………………………………3分
(2)解:由题意得:,函数图象如图所示.
………………………………………………………………7分
由图可知资金金额满足240<w≤300时,以同样的资金可
批发到较多数量的该种水果.……………………………8分
(3)解法一:
设当日零售价为x元,由图可得日最高销量
当m>60时,x<6.5
由题意,销售利润为
………………………………12分
当x=6时,,此时m=80
即经销商应批发80kg该种水果,日零售价定为6元/kg,
当日可获得最大利润160元.……………………………………………14分
解法二:
设日最高销售量为xkg(x>60)
则由图②日零售价p满足:,于是
销售利润………………………12分
当x=80时,,此时p=6
即经销商应批发80kg该种水果,日零售价定为6元/kg,
当日可获得最大利润160元.……………………………………………14分
24.(09年广西河池)26. (本小题满分12分)
如图12,已知抛物线交轴于A、B两点,交轴于点C,抛物线的对称轴交轴于点E,点B的坐标为(,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.
(09年广西河池25题解析)(1)① 对称轴···································· (2分)
② 当时,有
解之,得 ,
∴ 点A的坐标为(,0).·································································· (4分)
(2)满足条件的点P有3个,分别为(,3),(2,3),(,).······· (7分)
(3)存在.··········································································································· (8分)
当时, ∴ 点C的坐标为(0,3)
∵ DE∥轴,AO3,EO2,AE1,CO3
∴ ∽ ∴ 即 ∴ DE1············· (9分)
∴ 4
在OE上找点F,使OF,此时2,直线CF把四边形DEOC
分成面积相等的两部分,交抛物线于点M.························································ (10分)
设直线CM的解析式为,它经过点.
则 ·························································································· (11分)
解之,得 ∴ 直线CM的解析式为 ·························· (12分)
23.(09年广西桂林)26.(本题满分12分)如图,已知直线,它与轴、轴的交点
分别为A、B两点.
(1)求点A、点B的坐标;
(2)设F是轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与轴相切于点F(不写作法和证明,保留作图痕迹);
(3)设(2)中所作的⊙P的圆心坐标为P(),求与的函数关系式;
(4)是否存在这样的⊙P,既与轴相切又与直线相切于点B,若存在,求出圆心P的坐标;若不存在,请说明理由.
(09年广西桂林26题解析)解(1)A(,0),B(0,3)····· 2分(每对一个给1分)
(2)满分3分.其中过F作出垂线1分,作出BF中垂线1分,找出圆心并画出⊙P给1分.
(注:画垂线PF不用尺规作图的不扣分)
(3)过点P作PD⊥轴于D,则PD=,BD=,·········· 6分
PB=PF=,∵△BDP为直角三形,
∴
∴···························· 7分
即
即
∴与的函数关系为·········································································· 8分
(4)存在
解法1:∵⊙P与轴相切于点F,且与直线相切于点B
∴················································································································ 9分
∵
∴
∵AF= , ∴··········································································· 10分
∴········································································································ 11分
把代入,得
∴点P的坐标为(1,)或(9,15)····································································· 12分
22.(09年广西崇左)25.(本小题满分16分)
在平面直角坐标系中,现将一块等腰直角三角板放在第二象限,斜靠在两坐标轴上,且点,点,如图所示:抛物线经过点.
(1)求点的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点(点除外),使仍然是以为直角边的等腰直角三角形?若存在,求所有点的坐标;若不存在,请说明理由.
(09年广西崇左25题解析)(1)过点作轴,垂足为,
;················································· 1分
又,
,··············································· 2分
·································· 3分
点的坐标为;············································ 4分
(2)抛物线经过点,则得到,························ 5分
解得,所以抛物线的解析式为;············································· 7分
(3)假设存在点,使得仍然是以为直角边的等腰直角三角形:
若以点为直角顶点;
则延长至点,使得,得到等腰直角三角形,··························· 8分
过点作轴,
;
·································································································· 10分
,可求得点;·········································· 11分
若以点为直角顶点;
则过点作,且使得,得到等腰直角三角形,·············· 12分
过点作轴,同理可证;··············································· 13分
,可求得点;················································ 14分
经检验,点与点都在抛物线上.···························· 16分
21.(09年广西来宾)26.(本小题满分12分)
当x=2时,抛物线y=ax2+bx+c取得最小值-1,并且抛物线与y轴交于点C(0,3),与x轴交于点A、B.
(1)求该抛物线的关系式;
(2)若点M(x,y1),N(x+1,y2)都在该抛物线上,试比较y1与y2的大小;
(3)D是线段AC的中点,E为线段AC上一动点(A、C两端点除外),过点E作y轴的平行线EF与抛物线交于点F.问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,则说明理由.
(09年广西来宾26题解析)解:(1)由题意可设抛物线的关系式为y=a(x-2)2-1 …………1分
因为点C(0,3)在抛物线上
所以3=a(0-2)2-1,即a=1 …………………………2分
所以,抛物线的关系式为y=(x-2)2-1=x2-4 x+3 ……3分
(2)∵点M(x,y1),N(x+1,y2)都在该抛物线上
∴y1-y2=(x2-4 x+3)-[(x+1)2-4(x+1)+3]=3-2 x …………4分
当3-2 x>0,即时,y1>y2 ………………………………5分
当3-2 x=0,即时,y1=y2 ………………………………6分
当3-2 x<0,即时,y1<y2 ………………………………7分
(3)令y=0,即x2-4 x+3=0,得点A(3,0),B(1,0),线段AC的中点为D(,)
直线AC的函数关系式为y=-x+3 ………………………………8分
因为△OAC是等腰直角三角形,所以,要使△DEF与△OAC相似,△DEF也必须是等腰直角三角形.由于EF∥OC,因此∠DEF=45°,所以,在△DEF中只可能以点D、F为直角顶点.
①当F为直角顶点时,DF⊥EF,此时△DEF∽△ACO,DF所在直线为
由,解得,(舍去) ……9分
将代入y=-x+3,得点E(,) …………10分
②当D为直角顶点时,DF⊥AC,此时△DEF∽△OAC,由于点D为线段AC的中点,因此,DF所在直线过原点O,其关系式为y=x.
解x2-4 x+3=x,得,(舍去) …………11分
将代入y=-x+3,得点E(,) …………12分
20.(09年广东)22. 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,
(1)证明:Rt△ABM ∽Rt△MCN;
(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;
(3)当M点运动到什么位置时Rt△ABM ∽Rt△AMN,
求此时x的值.
(09年广东22题解析)(1)证明:∵四边形ABCD是正方形,∴∠B=∠C=90°,∠ABM+∠BAM=90°
∵∠ABM+∠CMN+∠AMN=180°,∠AMN=90°∴∠AMB+∠CMN=90°∴∠BAM=∠CMN
∴Rt△ABM∽Rt△MCN
(2)∵Rt△ABM∽Rt△MCN,∴即解得:
∵ ∴,
即:
又∵
∴当x=2时,y有最大值10.
∴当M点运动到BC的中点时,四边形ABCN的面积最大,最大面积是10.
(3)∵Rt△ABM∽Rt△MCN,∴,即
化简得:,解得:x=2
∴当M点运动到BC的中点时Rt△ABM ∽Rt△AMN,此时x的值为2.
19.(09年广东肇庆)25.(本小题满分 10 分)
如图 9,的直径和是它的两条切线,切于E,交AM于D,
交BN 于C.设.
(1)求证:;
(2)求关于的关系式;
(3)求四边形的面积S,并证明:.
(09年广东肇庆25题解析)(1)证明:∵AB是直径,AM、BN是切线,
∴,∴.················· (2 分)
解:(2)过点D作 于F,则.
由(1),∴四边形为矩形.
∴,.································ (3 分)
∵DE、DA,CE、CB都是切线,
∴根据切线长定理,得
,.··································· (4 分)
在中,,
∴,················································································· (5 分)
化简,得.······················································································· (6分)
(3)由(1)、(2)得,四边形的面积,
即.···························································································· (8分)
∵,当且仅当时,等号成立.
∴,即.··················································································· (10分)
18.(09年广东湛江)28.已知矩形纸片的长为4,宽为3,以长所在的直线为轴,为坐标原点建
立平面直角坐标系;点是边上的动点(与点不重合),现将沿翻折
得到,再在边上选取适当的点将沿翻折,得到,使得
直线重合.
(1)若点落在边上,如图①,求点的坐标,并求过此三点的抛物线的函数关系式;
(2)若点落在矩形纸片的内部,如图②,设当为何值时,取得最大值?
(3)在(1)的情况下,过点三点的抛物线上是否存在点使是以为直角边的直角三角形?若不存在,说明理由;若存在,求出点的坐标
(09年广东湛江28题解析)解:(1)由题意知,均为等腰直角三角形,
可得······················································································· 2分
设过此三点的抛物线为则
过三点的抛物线的函数关系式为··································· 4分
(2)由已知平分平分且重合,则
又
.
.
即······················································································· 6分
当时,有最大值··················································································· 8分
(3)假设存在,分两种情况讨论:
①当时,由题意可知,且点在抛物线上,故点与点重合,所求的点为(0,3) 9分
②当时,过点作平行于的直线,假设直线交抛物线于另一点点,直线的方程为,将直线向上平移2个单位与直线重合,直线的方程为 10分
由得或
又点
故该抛物线上存在两点满足条件.························································· 12分
说明:以上各题如有其他解(证)法,请酌情给分.
17.(09年广东深圳)23.(本题10分)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图11)。
(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式。(4分)
(2)如图12,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E。
|
②又连接CD、CP(如图13),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由。(3分)
(09年广东深圳23题解析)
(1) 由Rt△AOC∽Rt△COB易知,CO2=OA.OB=OA(AB-OA),可求OA=1,OB=4
∴A(-1,0) B(4,0) C(0,2) 可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,可求a=
∴为所求
(2) ; 提示:直线BC的解析式为设,利用勾股定理和点在直线BC上,可得两个方程组 分别可求和
(3) 过D作X轴的垂线,交PC于M,易求PC的解析式为,且,故
故,当时,,
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com