题目列表(包括答案和解析)

 0  87253  87261  87267  87271  87277  87279  87283  87289  87291  87297  87303  87307  87309  87313  87319  87321  87327  87331  87333  87337  87339  87343  87345  87347  87348  87349  87351  87352  87353  87355  87357  87361  87363  87367  87369  87373  87379  87381  87387  87391  87393  87397  87403  87409  87411  87417  87421  87423  87429  87433  87439  87447  447348 

2.(09年福建龙岩)26.(14分)如图,抛物线x轴交于AB两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连结BCAD.

(1)求C点的坐标及抛物线的解析式;

(2)将△BCH绕点B按顺时针旋转90°后                    再沿x轴对折得到

BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;

(3)设过点E的直线交AB边于点P,交CD边于点Q. 问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由.

(09年福建龙岩26题解析)解:(1)∵四边形OBHC为矩形,∴CDAB

     又D(5,2),

     ∴C(0,2),OC=2 . …………………………… 2分

     ∴   解得

     ∴抛物线的解析式为: …… 4分

   (2)点E落在抛物线上. 理由如下:……… 5分

     由y = 0,得.

     解得x1=1,x2=4. ∴A(4,0),B(1,0).  ……………………………… 6分

     ∴OA=4,OB=1.

     由矩形性质知:CH=OB=1,BH=OC=2,∠BHC=90°,

     由旋转、轴对称性质知:EF=1,BF=2,∠EFB=90°,

     ∴点E的坐标为(3,-1).  ………………………………………………… 7分

     把x=3代入,得

     ∴点E在抛物线上. …………………………………………………………… 8分

   (3)法一:存在点P(a,0),延长EFCD于点G,易求OF=CG=3,PB=a-1.

         S梯形BCGF = 5,S梯形ADGF = 3,记S梯形BCQP = S1S梯形ADQP = S2

下面分两种情形:

      ①当S1S2 =1∶3时,

此时点P在点F(3,0)的左侧,则PF = 3-a

由△EPF∽△EQG,得,则QG=9-3a

CQ=3-(9-3a) =3a -6

由S1=2,得,解得;………………… 11分

        ②当S1S2=3∶1时,

此时点P在点F(3,0)的右侧,则PF = a-3,

由△EPF∽△EQG,得QG = 3a-9,∴CQ = 3 +(3 a-9)= 3 a-6,

由S1= 6,得,解得.

综上所述:所求点P的坐标为(,0)或(,0)……… 14分

   法二:存在点P(a,0). 记S梯形BCQP = S1S梯形ADQP = S2,易求S梯形ABCD = 8.

PQ经过点F(3,0)时,易求S1=5,S2 = 3,

此时S1S2不符合条件,故a≠3.

设直线PQ的解析式为y = kx+b(k≠0),则,解得

. 由y = 2得x = 3a-6,∴Q(3a-6,2) ……… 10分

CQ = 3a-6,BP = a-1,.

下面分两种情形:

①当S1S2 = 1∶3时,= 2;

  ∴4a7 = 2,解得;……………………………………………… 12分

②当S1S2 = 3∶1时,

  ∴4a7 = 6,解得

综上所述:所求点P的坐标为(,0)或(,0)………… 14分

[说明:对于第(3)小题,只要考生能求出两个答案,就给6分. ]

试题详情

1.(09年安徽)23.已知某种水果的批发单价与批发量的函数关系如图(1)所示.

(1)请说明图中①、②两段函数图象的实际意义.

[解]

(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的

函数关系式;在下图的坐标系中画出该函数图象;指出金额在什

么范围内,以同样的资金可以批发到较多数量的该种水果.

[解]

(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函

数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,

且当日零售价不变,请你帮助该经销商设计进货和销售的方案,

使得当日获得的利润最大.

[解]

(09年安徽23题解析)(1)解:图①表示批发量不少于20kg且不多于60kg的该种水果,

可按5元/kg批发;……3分

图②表示批发量高于60kg的该种水果,可按4元/kg批发.

………………………………………………………………3分

(2)解:由题意得:,函数图象如图所示.

………………………………………………………………7分

由图可知资金金额满足240<w≤300时,以同样的资金可

批发到较多数量的该种水果.……………………………8分

(3)解法一:

设当日零售价为x元,由图可得日最高销量

m>60时,x<6.5

由题意,销售利润为

………………………………12分

x=6时,,此时m=80

即经销商应批发80kg该种水果,日零售价定为6元/kg,

当日可获得最大利润160元.……………………………………………14分

解法二:

设日最高销售量为xkg(x>60)

则由图②日零售价p满足:,于是

销售利润………………………12分

x=80时,,此时p=6

即经销商应批发80kg该种水果,日零售价定为6元/kg,

当日可获得最大利润160元.……………………………………………14分

试题详情

24.(09年广西河池)26. (本小题满分12分)

如图12,已知抛物线轴于AB两点,交轴于点C,抛物线的对称轴交轴于点E,点B的坐标为(,0).

(1)求抛物线的对称轴及点A的坐标;

(2)在平面直角坐标系中是否存在点P,与ABC三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;

(3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

(09年广西河池25题解析)(1)① 对称轴···································· (2分)

② 当时,有

解之,得

∴ 点A的坐标为(,0).·································································· (4分)

(2)满足条件的点P有3个,分别为(,3),(2,3),().······· (7分)

(3)存在.··········································································································· (8分)

时,  ∴ 点C的坐标为(0,3)

DE轴,AO3,EO2,AE1,CO3

  ∴   即  ∴ DE1············· (9分)

4

OE上找点F,使OF,此时2,直线CF把四边形DEOC

分成面积相等的两部分,交抛物线于点M.························································ (10分)

设直线CM的解析式为,它经过点

·························································································· (11分)

解之,得   ∴ 直线CM的解析式为 ·························· (12分)

试题详情

23.(09年广西桂林)26.(本题满分12分)如图,已知直线,它与轴、轴的交点

分别为AB两点.

(1)求点A、点B的坐标;

(2)设F轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与轴相切于点F(不写作法和证明,保留作图痕迹);

(3)设(2)中所作的⊙P的圆心坐标为P(),求的函数关系式;

(4)是否存在这样的⊙P,既与轴相切又与直线相切于点B,若存在,求出圆心P的坐标;若不存在,请说明理由.

(09年广西桂林26题解析)解(1)A(,0),B(0,3)····· 2分(每对一个给1分)

(2)满分3分.其中过F作出垂线1分,作出BF中垂线1分,找出圆心并画出⊙P给1分.

   (注:画垂线PF不用尺规作图的不扣分)

(3)过点PPD轴于D,则PD=BD=,·········· 6分

PB=PF=,∵△BDP为直角三形,

···························· 7分

的函数关系为·········································································· 8分

(4)存在

解法1:∵⊙P轴相切于点F,且与直线相切于点B

················································································································ 9分

AF=  ,  ∴··········································································· 10分

········································································································ 11分

代入,得

∴点P的坐标为(1,)或(9,15)····································································· 12分

试题详情

22.(09年广西崇左)25.(本小题满分16分)

在平面直角坐标系中,现将一块等腰直角三角板放在第二象限,斜靠在两坐标轴上,且点,点,如图所示:抛物线经过点

(1)求点的坐标;

(2)求抛物线的解析式;

(3)在抛物线上是否还存在点(点除外),使仍然是以为直角边的等腰直角三角形?若存在,求所有点的坐标;若不存在,请说明理由.

(09年广西崇左25题解析)(1)过点轴,垂足为

;················································· 1分

,··············································· 2分

·································· 3分

的坐标为;············································ 4分

(2)抛物线经过点,则得到,························ 5分

解得,所以抛物线的解析式为;············································· 7分

(3)假设存在点,使得仍然是以为直角边的等腰直角三角形:

若以点为直角顶点;

则延长至点,使得,得到等腰直角三角形,··························· 8分

过点轴,

·································································································· 10分

,可求得点;·········································· 11分

若以点为直角顶点;

则过点,且使得,得到等腰直角三角形,·············· 12分

过点轴,同理可证;··············································· 13分

,可求得点;················································ 14分

经检验,点与点都在抛物线上.···························· 16分

试题详情

21.(09年广西来宾)26.(本小题满分12分)

x=2时,抛物线yax2+bx+c取得最小值-1,并且抛物线与y轴交于点C(0,3),与x轴交于点AB

(1)求该抛物线的关系式;

(2)若点M(xy1),N(x+1,y2)都在该抛物线上,试比较y1y2的大小;

(3)D是线段AC的中点,E为线段AC上一动点(AC两端点除外),过点Ey轴的平行线EF与抛物线交于点F.问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,则说明理由.

(09年广西来宾26题解析)解:(1)由题意可设抛物线的关系式为ya(x-2)2-1      …………1分

因为点C(0,3)在抛物线上

所以3=a(0-2)2-1,即a=1      …………………………2分

所以,抛物线的关系式为y=(x-2)2-1=x2-4 x+3   ……3分

(2)∵点M(xy1),N(x+1,y2)都在该抛物线上

y1y2=(x2-4 x+3)-[(x+1)2-4(x+1)+3]=3-2 x …………4分

当3-2 x>0,即时,y1y2     ………………………………5分

当3-2 x=0,即时,y1y2     ………………………………6分

当3-2 x<0,即时,y1y2     ………………………………7分

(3)令y=0,即x2-4 x+3=0,得点A(3,0),B(1,0),线段AC的中点为D(,)

直线AC的函数关系式为y=-x+3     ………………………………8分

因为△OAC是等腰直角三角形,所以,要使△DEF与△OAC相似,△DEF也必须是等腰直角三角形.由于EFOC,因此∠DEF=45°,所以,在△DEF中只可能以点DF为直角顶点.

①当F为直角顶点时,DFEF,此时△DEF∽△ACODF所在直线为

,解得(舍去)    ……9分

代入y=-x+3,得点E()   …………10分

②当D为直角顶点时,DFAC,此时△DEF∽△OAC,由于点D为线段AC的中点,因此,DF所在直线过原点O,其关系式为yx

x2-4 x+3=x,得(舍去)        …………11分

代入y=-x+3,得点E()   …………12分

试题详情

20.(09年广东)22. 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,

(1)证明:Rt△ABM ∽Rt△MCN;

(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;

(3)当M点运动到什么位置时Rt△ABM ∽Rt△AMN,

求此时x的值.

(09年广东22题解析)(1)证明:∵四边形ABCD是正方形,∴∠B=∠C=90°,∠ABM+∠BAM=90°

∵∠ABM+∠CMN+∠AMN=180°,∠AMN=90°∴∠AMB+∠CMN=90°∴∠BAM=∠CMN

∴Rt△ABM∽Rt△MCN

(2)∵Rt△ABM∽Rt△MCN,∴解得:

   ∴,

 即:

又∵

∴当x=2时,y有最大值10.

∴当M点运动到BC的中点时,四边形ABCN的面积最大,最大面积是10.

(3)∵Rt△ABM∽Rt△MCN,∴,即

化简得:,解得:x=2

∴当M点运动到BC的中点时Rt△ABM ∽Rt△AMN,此时x的值为2.

试题详情

19.(09年广东肇庆)25.(本小题满分 10 分)

如图 9,的直径是它的两条切线,E,交AMD

BNC.设

(1)求证:

(2)求关于的关系式;

(3)求四边形的面积S,并证明:

 

(09年广东肇庆25题解析)(1)证明:∵AB是直径,AMBN是切线,

,∴.················· (2 分)

解:(2)过点DF,则

由(1),∴四边形为矩形.

.································ (3 分)

DEDACECB都是切线,

∴根据切线长定理,得

.··································· (4 分)

中,

,················································································· (5 分)

化简,得.······················································································· (6分)

(3)由(1)、(2)得,四边形的面积

.···························································································· (8分)

,当且仅当时,等号成立.

,即.··················································································· (10分)

试题详情

18.(09年广东湛江)28.已知矩形纸片的长为4,宽为3,以长所在的直线为轴,为坐标原点建

立平面直角坐标系;点边上的动点(与点不重合),现将沿翻折

得到,再在边上选取适当的点沿翻折,得到,使得

直线重合.

(1)若点落在边上,如图①,求点的坐标,并求过此三点的抛物线的函数关系式;

(2)若点落在矩形纸片的内部,如图②,设为何值时,取得最大值?

(3)在(1)的情况下,过点三点的抛物线上是否存在点使是以为直角边的直角三角形?若不存在,说明理由;若存在,求出点的坐标

 

(09年广东湛江28题解析)解:(1)由题意知,均为等腰直角三角形,

可得······················································································· 2分

 

设过此三点的抛物线为

三点的抛物线的函数关系式为··································· 4分

(2)由已知平分平分重合,则

······················································································· 6分

时,有最大值··················································································· 8分

(3)假设存在,分两种情况讨论:

①当时,由题意可知,且点在抛物线上,故点与点重合,所求的点为(0,3)  9分

②当时,过点作平行于的直线,假设直线交抛物线于另一点直线的方程为,将直线向上平移2个单位与直线重合,直线的方程为 10分

又点

故该抛物线上存在两点满足条件.························································· 12分

 

说明:以上各题如有其他解(证)法,请酌情给分.

试题详情

17.(09年广东深圳)23.(本题10分)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图11)。

(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式。(4分)

(2)如图12,点D的坐标为(2,0),点P(mn)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E。

图11
 
①当△BDE是等腰三角形时,直接写出此时点E的坐标。(3分)

②又连接CD、CP(如图13),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由。(3分)

 

(09年广东深圳23题解析)

(1)    由RtAOC∽RtCOB易知,CO2=OA.OB=OA(AB-OA),可求OA=1,OB=4

A(-1,0)  B(4,0)  C(0,2) 可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,可求a=

为所求

(2)      提示:直线BC的解析式为,利用勾股定理和点在直线BC上,可得两个方程组  分别可求

(3)    过DX轴的垂线,交PCM,易求PC的解析式为,且,故

 

故,当时,

试题详情


同步练习册答案