题目列表(包括答案和解析)

 0  87254  87262  87268  87272  87278  87280  87284  87290  87292  87298  87304  87308  87310  87314  87320  87322  87328  87332  87334  87338  87340  87344  87346  87348  87349  87350  87352  87353  87354  87356  87358  87362  87364  87368  87370  87374  87380  87382  87388  87392  87394  87398  87404  87410  87412  87418  87422  87424  87430  87434  87440  87448  447348 

11.(09年广东佛山)25.一般地,学习几何要从作图开始,再观察图形,根据图形的某一类共同特征对图形进行分类(即给一类图形下定义--定义概念便于归类、交流与表达),然后继续研究图形的其它特征、判定方法以及图形的组合、图形之间的关系、图形的计算等问题. 课本里对四边形的研究即遵循着上面的思路.

当然,在学习几何的不同阶段,可能研究的是几何的部分问题.比如有下面的问题,请你研究.

已知:四边形中,,且

(1)借助网格画出四边形所有可能的形状;

(2)简要说明在什么情况下四边形具有所画的形状.

(09年广东佛山25题解析)(1)四边形可能的形状有三类:图“矩形”、图“等腰梯形”、图的“四边形”.

注1:画出“矩形”或“等腰梯形”,各给1分;画出另一类图形(后两种可以看作一类),给2分;

等腰梯形不单独画而在后两种图中反映的,不扣分;画图顺序不同但答案正确不扣分.

注2:如果在类似图或图④的图中画出凹四边形,同样给分(两种都画,只给一种的分).

(2) (i)若是直角(图),则四边形为等腰梯形;······································ 6分

(ii)若是锐角(图),存在两个点,得到等腰梯形和符合条件但不是梯形的四边形;······································································································································ 8分

其中,若是直角(图),则四边形为矩形.················································ 9分

(iii)若是钝角(图④),存在两个点,得到等腰梯形和符合条件但不是梯形的四边形;·································································································································· 11分

注:可用或者是否相等分类;只画矩形和等腰梯形并进行说明可给4分.

试题详情

10.(09年甘肃庆阳)29.(12分)如图18,在平面直角坐标系中,将一块腰长为5的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(,0),点B在抛物线上.

(1)点A的坐标为       ,点B的坐标为      

(2)抛物线的关系式为      

(3)设(2)中抛物线的顶点为D,求△DBC的面积;

(4)将三角板ABC绕顶点A逆时针方向旋转90°,到达的位置.请判断点是否在(2)中的抛物线上,并说明理由.

(09年甘肃庆阳29题解析)解: (1)A(0,2), B(,1).···························· 2分

(2).······················································································· 3分

(3)如图1,可求得抛物线的顶点D().············································· 4分

设直线BD的关系式为, 将点BD的坐标代入,求得

BD的关系式为.········································································ 5分

设直线BDx 轴交点为E,则点E(,0),CE=

∴  △DBC的面积为.························································ 7分

 

(4)如图2,过点轴于点M,过点B轴于点N,过点轴于点P.   8分

 

在Rt△ABM与Rt△BAN中,

AB=AB′, ∠ABM=∠BAN=90°-∠BAM

∴ Rt△ABM≌Rt△BAN.····················································································· 9分

BM=AN=1,AM=BN=3, ∴ B′(1,).··················································· 10分

同理△ACP≌△CAOCP=OA=2,AP=OC=1,可得点C′(2,1);····················· 11分

将点B′、C′的坐标代入,可知点B′、C′在抛物线上.················ 12分

(事实上,点P与点N重合)

试题详情

9.(09年甘肃兰州)29.(本题满分9分)如图①,正方形 ABCD中,点AB的坐标分别为(0,10),(8,4), 

C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿ABCD匀速运动, 

同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,  

设运动的时间为t秒.

(1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;

(2)求正方形边长及顶点C的坐标;

(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;

(4)如果点PQ保持原速度不变,当点P沿ABCD匀速运动时,OPPQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.

(09年甘肃兰州29题解析)解:(1)(1,0)······················································· 1分

 点P运动速度每秒钟1个单位长度.··········································································· 2分

(2) 过点BFy轴于点轴于点,则=8,

  ∴

 在Rt△AFB中,          3分

 过点轴于点,与的延长线交于点

∴△ABF≌△BCH

 

∴所求C点的坐标为(14,12).            4分

(3) 过点PPMy轴于点MPN轴于点N

则△APM∽△ABF

 . 

 ∴.  ∴

设△OPQ的面积为(平方单位)

(0≤≤10) ························································ 5分

说明:未注明自变量的取值范围不扣分.

 ∵<0  ∴当时, △OPQ的面积最大.······························ 6分

 此时P的坐标为() .················································································· 7分

(4)  时,  OPPQ相等.························································· 9分

 对一个加1分,不需写求解过程.

试题详情

8.(09年甘肃定西)28.如图14(1),抛物线x轴交于AB两点,与y轴交于点C(0,).[图14(2)、图14(3)为解答备用图]

(1)   ,点A的坐标为   ,点B的坐标为   

(2)设抛物线的顶点为M,求四边形ABMC的面积;

(3)在x轴下方的抛物线上是否存在一点D,使四边形ABDC的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由;

(4)在抛物线上求点Q,使△BCQ是以BC为直角边的直角三角形.

(09年甘肃定西28题解析)解:(1),··················· 1分

A(-1,0),····························································· 2分

B(3,0).······························································· 3分

(2)如图14(1),抛物线的顶点为M(1,-4),连结OM

      ······································································ 4分

则 △AOC的面积=,△MOC的面积=

MOB的面积=6,····················································· 5分

∴ 四边形 ABMC的面积

=△AOC的面积+△MOC的面积+△MOB的面积=9.········································· 6分

说明:也可过点M作抛物线的对称轴,将四边形ABMC的面

积转化为求1个梯形与2个直角三角形面积的和.

(3)如图14(2),设D(m),连结OD

则 0<m<3, <0.

且 △AOC的面积=,△DOC的面积=,         

DOB的面积=-(),····························································· 8分

∴ 四边形 ABDC的面积=△AOC的面积+△DOC的面积+△DOB的面积

=

=.···················································································· 9分

∴ 存在点D,使四边形ABDC的面积最大为.······························ 10分

(4)有两种情况:

如图14(3),过点BBQ1BC,交抛物线于点Q1、交y轴于点E,连接Q1C

∵ ∠CBO=45°,∴∠EBO=45°,BO=OE=3.

∴ 点E的坐标为(0,3).

∴ 直线BE的解析式为.···································································· 12分

解得

∴ 点Q1的坐标为(-2,5).··············································································· 13分

如图14(4),过点CCFCB,交抛物线于点Q2、交x轴于点F,连接BQ2

∵ ∠CBO=45°,∴∠CFB=45°,OF=OC=3.

∴ 点F的坐标为(-3,0).

∴ 直线CF的解析式为.···································································· 14分

解得

∴点Q2的坐标为(1,-4).················································································· 15分

综上,在抛物线上存在点Q1(-2,5)、Q2(1,-4),使△BCQ1、△BCQ2是以BC为直角边的直角三角形.   16分

说明:如图14(4),点Q2即抛物线顶点M,直接证明△BCM为直角三角形同样得2分.

试题详情

7.(09年福建福州)22.(满分14分)

已知直线l:y=-x+m(m≠0)x轴、y轴于A、B两点,点C、M分别在

线段OA、AB上,且OC=2CA,AM=2MB,连接MC,将△ACM绕点M

旋转180°,得到△FEM,则点E在y轴上, 点F在直线l上;取线段EO中

点N,将ACM沿MN所在直线翻折,得到△PMG,其中P与A为对称点.记:

过点F的双曲线为,过点M且以B为顶点的抛物线为,过点P且以M

为顶点的抛物线为.

(1) 如图10,当m=6时,①直接写出点M、F的坐标,

②求的函数解析式;

(2)当m发生变化时, ①在的每一支上,y随x的增大如何变化?请说明理由。

            ②若中的y都随着x的增大而减小,写出x的取值范围。

(09年福建福州22题解析)解:(1)①点M的坐标为(2,4),点F的坐标为(-2,8).……………………2分

②    设的函数解析式为(

  ∵过点F(-2,8)

  ∴的函数解析式为

的顶点B的坐标是(0,6)

∴设的函数解析式为

过点M(2,4)

的函数解析式为.……………………6分

(2)依题意得,A(m,0),B(0,m),

∴点M坐标为(),点F坐标为().

①设的函数解析式为(

过点F()

∴在的每一支上,y随着x的增大而增大.

②答:当>0时,满足题意的x的取值范围为 0<x

<0时,满足题意的x的取值范围为<x<0.………………………………14分

试题详情

6.(09年福建厦门)26.(11分)已知二次函数yx2x+c

(1)若点A(-1,a)、B(2,2n-1)在二次函数yx2x+c的图象上,求此二次函数的最小值;

(2)若点D(x1y1)、E(x2y2)、P(mn)(mn)在二次函数yx2x+c的图象上,且DE两点关于坐标原点成中心对称,连接OP.当2≤OP≤2+时,试判断直线DE与抛物线yx2x+c+的交点个数,并说明理由.

(09年福建厦门26题解析)  (1)解:法1:由题意得             ……1分

  解得                            ……2分

  法2:∵ 抛物线yx2x+c的对称轴是x=,

   且  -(-1) =2-,∴ AB两点关于对称轴对称.               

   ∴ n=2n-1                           ……1分

   ∴ n=1,c=-1.                         ……2分

   ∴ 有 yx2x-1                         ……3分

       =(x-)2-.                  

   ∴ 二次函数yx2x-1的最小值是-.               ……4分

  (2)解:∵ 点P(mm)(m>0),

   ∴ POm.

   ∴ 2≤m ≤+2.

   ∴ 2≤m≤1+.                         ……5分

   法1: ∵ 点P(mm)(m>0)在二次函数yx2x+c的图象上,

   ∴ mm2m+c,即c=-m2+2m.

   ∵ 开口向下,且对称轴m=1,

   ∴ 当2≤m≤1+ 时,

   有  -1≤c≤0.                          ……6分

   法2:∵ 2≤m≤1+,

   ∴ 1≤m-1≤.

   ∴ 1≤(m-1)2≤2. 

   ∵ 点P(mm)(m>0)在二次函数yx2x+c的图象上,

   ∴ mm2m+c,即1-c=(m-1)2.

   ∴  1≤1-c≤2.

   ∴ -1≤c≤0.                          ……6分

   ∵ 点DE关于原点成中心对称,

   法1: ∴ x2=-x1y2=-y1.

   ∴

   ∴ 2y1=-2x1y1=-x1.                  

   设直线DEykx.

   有 -x1kx1.

   由题意,存在x1x2.                 

   ∴ 存在x1,使x1≠0.                     ……7分

   ∴  k=-1.

   ∴ 直线DE y=-x.                     ……8分

   法2:设直线DEykx.

   则根据题意有 kxx2x+c,即x2-(k+1) x+c=0.

   ∵ -1≤c≤0,

   ∴ (k+1)2-4c≥0.

   ∴ 方程x2-(k+1) x+c=0有实数根.                ……7分

   ∵ x1+x2=0,                  

   ∴ k+1=0.

   ∴ k=-1.

   ∴ 直线DE y=-x.                       ……8分

   若 则有 x2+c+=0.即 x2=-c-.

   ①  当 -c-=0时,即c=-时,方程x2=-c-有相同的实数根,

   即直线y=-x与抛物线y=x2x+c+有唯一交点.          ……9分

   ②  当 -c->0时,即c<-时,即-1≤c<-时,

   方程x2=-c-有两个不同实数根,

   即直线y=-x与抛物线y=x2x+c+有两个不同的交点.      ……10分

   ③  当 -c-<0时,即c>-时,即-<c≤0时,

   方程x2=-c-没有实数根,

   即直线y=-x与抛物线y=x2x+c+没有交点.          ……11分

试题详情

3.6或12.……………………………………………………………(13分)

试题详情

5.(09年福建泉州)28.(13分)在直角坐标系中,点A(5,0)关于原点O的对称点为点C.

(1)请直接写出点C的坐标;

(2)若点B在第一象限内,∠OAB=∠OBA,并且点B关于原点O的对称点为点D.

①试判断四边形ABCD的形状,并说明理由;

②现有一动点P从B点出发,沿路线BA-AD以每秒1个单位长的速度向终点D运动,另一动点Q从A点同时出发,沿AC方向以每秒0.4个单位长的速度向终点C运动,当其中一个动点到达终点时,另一个动点也随之停止运动.已知AB=6,设点P、Q的运动时间为t秒,在运动过程中,当动点Q在以PA为直径的圆上时,试求t的值.

(09年福建泉州28题解析)28.(本小题13分)

解:(1)C(-5,0)…………………………………………(3分)

(2)①四边形ABCD为矩形,理由如下:

如图,由已知可得:A、O、C在同一直线上,且       OA=OC;B、O、D在同一直线上,且OB=OD,∴四边形ABCD是平行四边形.…………………………………………………………(5分)

∵∠OAB=∠OBA∴OA=OB,即AC=2OA=2OB=BD

∴四边形ABCD是矩形.……………………………………(7分)

②如图,由①得四边形ABCD是矩形

∴∠CBA=∠ADC=90°………………………………………(8分)

又AB=CD=6,AC=10

∴由勾股定理,得BC=AD=

==8…………………………………(9分)

,∴0≤t≤14.……………………(10分)

当0≤t≤6时,P点在AB上,连结PQ.

∵AP是直径,∴∠PQA=90°…………………………………(11分)

又∠PAQ=∠CAB,∴△PAQ∽△CAB

,即,解得t=3.6…………………………(12分)

当6<t≤14时,P点在AD上,连结PQ,

同理得∠PQA=90°,△PAQ∽△CAD

,即t-6,解得t=12.

综上所述,当动点Q在以PA为直径的圆上时,t的值为

试题详情

4.(09年福建莆田)25.(14分)已知,如图1,过点作平行于轴的直线,抛物线上的两点的横坐标分别为1和4,直线轴于点,过点分别作直线的垂线,垂足分别为点,连接

(1)求点的坐标;

(2)求证:

(3)点是抛物线对称轴右侧图象上的一动点,过点轴于点,是否存在点使得相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.

(09年福建莆田25题解析)25.(1)解:方法一,如图1,当时,

时,

·············································································· 1分

······················································································ 2分

设直线的解析式为··············································· 3分

  解得

∴直线的解析式为·············································· 4分

时,

···························································································································· 5分

方法二:求两点坐标同方法一,如图2,作,,垂足分别为,交轴于点,则四边形和四边形均为矩形,设························· 3分

······················································································································· 4分

解得

························································································································· 5分

(2)证明:方法一:在中,

························································································································ 6分

中,

由(1)得

··································································································· 7分

················································································································ 8分

方法二:由 (1)知

················································································································· 6分

同理:

······································································································· 7分

同理:

················································································································ 8分

(3)存在.

解:如图3,作轴,垂足为点··········· 9分

···················································· 10分

,则

①当时,

································································································ 11分

解得

···················································································································· 12分

②当时,

································································································ 13分

解得

综上,存在点使得相似.··································· 14分

试题详情

3.(09年福建宁德)26.(本题满分13分)如图,已知抛物线C1的顶点为P,与x轴相交于AB两点(点A在点B的左边),点B的横坐标是1.

(1)求P点坐标及a的值;(4分)

(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3C3的顶点为M,当点PM关于点B成中心对称时,求C3的解析式;(4分)

(3)如图(2),点Qx轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于EF两点(点E在点F的左边),当以点PNF为顶点的三角形是直角三角形时,求点Q的坐标.(5分)

(09年福建宁德26题解析)解:(1)由抛物线C1

顶点P的为(-2,-5)  ………2分

∵点B(1,0)在抛物线C1

     解得,a=       ………4分

(2)连接PM,作PHx轴于H,作MGx轴于G

∵点PM关于点B成中心对称

PM过点B,且PBMB

∴△PBH≌△MBG

MGPH=5,BGBH=3

∴顶点M的坐标为(4,5)          ………6分

     抛物线C2C1关于x轴对称得到,抛物线C3C2平移得到

∴抛物线C3的表达式为  ………8分

(3)∵抛物线C4C1绕点x轴上的点Q旋转180°得到

∴顶点NP关于点Q成中心对称

   由(2)得点N的纵坐标为5

设点N坐标为(m,5)       ………9分

   作PH⊥x轴于H,作NG⊥x轴于G

   作PKNGK

   ∵旋转中心Qx轴上

EFAB=2BH=6

   ∴FG=3,点F坐标为(m+3,0)

   H坐标为(2,0),K坐标为(m,-5),

根据勾股定理得

   PN2NK2+PK2m2+4m+104

   PF2PH2+HF2m2+10m+50

   NF2=52+32=34        ………10分

   ①当∠PNF=90º时,PN2+ NF2PF2,解得m=,∴Q点坐标为(,0) 

②当∠PFN=90º时,PF2+ NF2PN2,解得m=,∴Q点坐标为(,0)

③∵PNNK=10>NF,∴∠NPF≠90º

综上所得,当Q点坐标为(,0)或(,0)时,以点PNF为顶点

的三角形是直角三角形.    ………13分

试题详情


同步练习册答案