题目列表(包括答案和解析)
9. (2009南州)设矩形ABCD的长与宽的和为2,以AB为轴心旋转一周得到一个几何体,则此几何体的侧面积有( )
A、最小值4π B、最大值4π
C、最大值2π D、最小值2π
8. (2009泸州)已知⊙O1与⊙O2的半径分别为5cm和3cm,圆心距020=7cm,则两圆的位置关系为
A.外离 B.外切 C.相交 D.内切
7. (2009宜宾)若两圆的半径分别是2cm和3cm,圆心距为5cm,则这两圆的位置关系是( )
A.内切 B.相交 C.外切 D.外离
6. (2009台州)如图,⊙的内接多边形周长为3 ,⊙的外切多边形周长为3.4,
则下列各数中与此圆的周长最接近的是( ▲ )
A. B. C. D.
5. (2009台州)大圆半径为6,小圆半径为3,两圆圆心距为10,则这两圆的位置关系为( ▲ )
A.外离 B.外切 C.相交 D.内含
4. (2009德州)将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为
(A)10cm (B)30cm (C)45cm (D)300cm
3. A. 15 B. 20 C.15+ D.15+(2009重庆)如图,⊙是的外接圆,是直径,若,则等于( )
A.60º B.50º C.40º D.30º
2. (2009福州 )如图3, 是以等边三角形ABC一边AB为半径的四分之一圆周, P为 上任意一点,若AC=5,则四边形ACBP周长的最大值是
1. (2009日照)将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为
(A)10cm (B)30cm
(C)40cm (D)300cm
12.(09年广东广州)25.(本小题满分14分)
如图13,二次函数()的图象与轴交于两点,与轴交于点,的面积为.
(1)求该二次函数的关系式;
(2)过轴上的一点作轴的垂线,若该垂线与的外接圆有公共点,求的取值范围;
(3)在该二次函数的图象上是否存在点,使四边形为直角梯形?若存在,求出点的坐标;若不存在,请说明理由.
(09年广东广州25题解析)解:(1)设点,,其中.
∵抛物线过点,
∴.
∴.
∴.
∵抛物线与轴交于两点,
∴是方程的两个实根.
求的值给出以下两种方法:
方法1:由韦达定理得:.
∵的面积为,
∴,即.
∴.
∴.
∵,
∴.
∴.
解得.
∵,
∴.
∴所求二次函数的关系式为.
方法2:由求根公式得,.
.
∵的面积为,
∴,即.
∴.
∴.
解得.
∵,
∴.
∴所求二次函数的关系式为.
(2)令,解得.
∴,.
在中,,
在中,,
∵,
∴.
∴.
∴是直角三角形.
∴的外接圆的圆心是斜边的中点.
∴的外接圆的半径.
∵垂线与的外接圆有公共点,
∴.
(3)假设在二次函数的图象上存在点,使得四边形是直角梯形.
①若,设点的坐标为,,
过作轴,垂足为,如图1所示.
求点的坐标给出以下两种方法:
方法1:在中,
,
在中,,
∵,
∴.
∴.
.
解得或.
∵,
∴,此时点的坐标为.
而,因此当时在抛物线上存在点,使得四边形是直角梯形.
方法2:在与中,,
∴.
∴.
∴.
以下同方法1.
②若,设点的坐标为,,
过作轴,垂足为,如图2所示.
在中,,
在中,,
∵,
∴.
∴.
.
解得或.
∵,
∴,此时点的坐标为.
此时,因此当时,在抛物线上存在点,使得四边形是直角梯形.
综上所述,在抛物线上存在点,使得四边形是直角梯形,并且点的坐标为或.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com