题目列表(包括答案和解析)
4.任给一些不同的实数n,得到不同的抛物线y=2x2+n,如当n=0,±2时,关于这些抛物线有以下结论:①开口方向都相同;②对称轴都相同;③形状都相同;④都有最低点,其中判断正确的个数是
A.1个 B.2个 C.3个 D.4个
3.不论m取任何实数,抛物线y=a(x+m)2+m(a≠0)的顶点都
A.在y=x直线上 B.在直线y=-x上
C.在x轴上 D.在y轴上
2.抛物线y=-2x2-x+1的顶点在第_____象限
A.一 B.二 C.三 D.四
1.函数y=x2+2x+1写成y=a(x-h)2+k的形式是
A.y=(x-1)2+2 B.y=(x-1)2+
C.y=(x-1)2-3 D.y=(x+2)2-1
18.(2004·江苏南通)(13分)已知:△ABC中,AB=10.
(1)如图①,若点D,E分别是AC,BC边的中点,求DE的长;
(2)如图②,若点A1,A2把AC边三等分,过A1,A2作AB边的平行线,分别交BC边于点B1,B2,求A1B1+A2B2的值;
(3)如图③,若点A1,A2,…,A10把AC边十一等分,过各点作AB边的平行线,分别交BC边于点B1,B2,…,B10.根据你所发现的规律,直接写出A1B1+A2B2+…+A10B10的结果.
17.(开放题)(12分)已知:如图27-3-45①所示,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G.连结FG,延长AF、AG,与直线BC相交,易证FG=(AB+BC+AC).若(1)BD、CE分别是△ABC的内角平分线(如图②);(2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图③),则在图②、图③两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.
新课标理念中考题(满分13分)
16.(自主探究题)(10分)等腰梯形ABCD中,AD∥BC,E、F、G、H分别是AD、BE、BC、CE的中点.试探究:
(1)四边形EFGH的形状;
(2)若BC=2AD,且梯形ABCD的面积为9,求四边形EFGH的面积.
15.(创新实践题)(11分)已知:如图所示,梯形ABCD中,AB∥CD,且AB+CD=BC,M是AD的中点,求证:BM⊥CM.
14.(创新情景题)如图所示,直角梯形ABCD的中位线EF的长为a,垂直于底的腰AB的长为b,则图中阴影部分的面积等于_________.
新课标拓展训练(满分33分)
13.(应用题)如图所示,要测量A、B两点间的距离,在O点设桩,取OA中点C,OB中点D,测得CD=31.4m,则AB=__________m.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com