题目列表(包括答案和解析)
5.解:如图,甲从上午8:00到上午10:00一共走了2小时,
走了12千米,即OA=12.
乙从上午9:00到上午10:00一共走了1小时,
走了5千米,即OB=5.
在Rt△OAB中,AB2=122十52=169,∴AB=13,
因此,上午10:00时,甲、乙两人相距13千米.
∵15>13, ∴甲、乙两人还能保持联系.
答:上午10:00甲、乙两人相距13千米,两人还能保持联系.
4.解:根据勾股定理得直角三角形得另一条直角边为:
,所以地毯的总长度是5+12=17(米),
面积为17×2=34(米2),总价钱为34×18=612(元)
答:铺万这个楼道要用612元。
3.解:根据勾股定理得,蔬菜大棚的斜面的宽度即直角三角形的斜边长为:
m,所以蔬菜大棚的斜面面积为:10×20=200m2。
答:阳光透过的最大面积为200平方米。
2.解:(1)∵△ABC中,∠C=90°,AC=2.1 cm,BC=2.8 cm
∴AB2=AC2+BC2=2.12+2.82=12.25
∴AB=3.5 cm
∵S△ABC=AC·BC=AB·CD
∴AC·BC=AB·CD
∴CD===1.68(cm)
(2)在Rt△ACD中,由勾股定理得:
AD2+CD2=AC2
∴AD2=AC2-CD2=2.12-1.682
=(2.1+1.68)(2.1-1.68)
=3.78×0.42=2×1.89×2×0.21
=22×9×0.21×0.21
∴AD=2×3×0.21=1.26(cm)
∴BD=AB-AD=3.5-1.26=2.24(cm)
1.解:∵AD⊥AB,∴△ABD是直角三角形。
根据勾股定理得:AD2+AB2=BD2,即32+42=BD2, ∴BD=5;
同理在△DBC中,∵BD⊥BC,∴CD2=BD2+BC2,
即:CB2=132-52=144,∴CB=12
1.169 2.8 3.7 4.3、4、5; 5.250 6.6、8 7. 8.12
8.A 9.B 将等式两边整理的a2+b2=c2,所以是直角三角形。10.C梯子的长度不变,两次利用勾股定理可得答案选C
1.D 根据勾股定理的,直角所对的边是斜边。 2.A 3.C 利用轴对称易知,30°角所对的直角边是斜边的一半,由勾股定理知,另一边是选C .4.C 本题的三角形有锐角三角形与钝角三角形两种情况,当是锐角三角形是周长是42;当是钝角三角形时是周长是32 5.B 6.D 7.A 边长为4、6的等腰三角形有4、4、6与4、6、6两种情况,当是4、4、6时,底边上的高为;当是4、6、6时,底边上的高是,所以选A
5.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com