题目列表(包括答案和解析)
1.在△ABC中,点E,F在AB上,且AE=EF=FB,DF∥EC交BC于D,则FD:EC=__________.
2.若一个边长为10cm的等边三角形ABC内接一个正方形DEFG,且点D,E在BC边上,点F,G分别在AC,AB边上,则正方形DEFG的边长是__________.
3.如果一个三角形的面积扩大9倍,那么它的边长扩大_____________倍.
4.在平面直角坐标系内描出点A(3,4),B(0,0),C(9,0),D(6,4),你会发现连结各点组成的图形是____________.
5.如图所示,△ABC中,DE∥FG∥BC,且AD=DF=FB,则S△AFG:S△ABC=____________.
(第5题) (第6题) (第7题)
6.如图所示,有一块呈三角形的草坪,其一边长为20m,在这个草坪的图纸上,若这条边的长为5cm, 其他两边的长都是3. 5cm, 则该草坪其他两边的实际长度为______________.
7.如图所示的两个三角形是相似的,则x=_________,m=___________,n=____________.
8.如图所示,在矩形ABCD中,AB=3BC,P为DC上任意一点,使得△ADP与△PBC相似的点P有________个.
5.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式.
(2)求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式.
(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
4.已知一个长方体的木箱高为80,底面的长比宽多10,
(1)求这个长方体的体积()与长方体的宽()之间的函数关系式;
(2)问当该木箱的体积为0.72时,木箱底面的长与宽各为多少?
3.苹果熟了,从树上落下所经过的路程s与下落的时间t满足s=gt2(g是不为0的常数),则s与t的函数图象大致是( )
2.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的
长度不限)的矩形菜园,设边长为米,则菜园
的面积(单位:米)与(单位:米)的函数关系式为
(不要求写出自变量的取值范围).
1.有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中(如右图),则此抛物线的解析式为_______.
5. 小敏在某次投篮中,球的运动路线是抛物线的一部分(如图),若命中篮圈中心,则他与篮底的距离l是( ).
A.3.5m B.4m C.4.5m D.4.6m
知识整理:
二次函数应用
例题讲解:
例1:一座拱桥的轮廓是抛物线型(如图10所示),拱高6 m,跨度20 m,相邻两支柱间的距离均为5 m.
(1) 将抛物线放在所给的直角坐标系中(如图11所示),其表达式是的形式.请根据所给的数据求出的值.
(2) 求支柱MN的长度.
(3) 拱桥下地平面是双向行车道(正中间是一条宽2 m的隔离带),其中的一条行车道能否并排行驶宽2 m、高3 m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.
例2:某商店经营一批进价每件为2元的小商品,在市场营销的过程中发现:如果该商品按每件最低价3元销售,日销售量为18件,如果单价每提高1元,日销售量就减少2件.设销售单价为x(元),日销售量为y(件).
(1)写出日销售量y(件)与销售单价x(元)之间的函数关系式;
(2)设日销售的毛利润(毛利润=销售总额-总进价)为P(元),求出毛利润P(元)与销售单价x(元)之间的函数关系式;
(3)在下图所示的坐标系中画出P关于x的函数图象的草图,并标出顶点的坐标;
(4)观察图象,说出当销售单价为多少元时,日销售的毛利润最高?是多少?
课堂练习:
4..某飞机着陆生滑行的路程s米与时间t秒的关系式为:,试问飞机着陆后滑行 米才能停止.
3. 把一段长1.6米的铁丝围长方形ABCD,设宽为x,面积为y.则当y最大时,x所取的值是( )
A.0.5 B.0.4 C.0.3 D.0.6
2. 某公司的生产利润原来是a元,经过连续两年的增长达到了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是( )。
A.y=x2+a B.y= a(x-1)2 C.y=a(1-x)2 D.y=a(l+x)2
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com