题目列表(包括答案和解析)
(2),所以当x=5时,矩形的面积最大,最大为25cm2.
18.解法一:如图1,建立平面直角坐标系.
设抛物线解析式为y=ax2+bx.
由题意知B、C两点坐标分别为B(18,0),C(17,1.7).
把B、C两点坐标代入抛物线解析式得
解得
∴抛物线的解析式为 y=-0.1x2+1.8x
=-0.1(x-9)2+8.1.
∴该大门的高h为8.1m.
解法二:如图2,建立平面直角坐标系.
设抛物线解析式为y=ax2.
由题意得B、C两点坐标分别为B(9,-h),C(8,-h+1.7).
把B、C两点坐标代入y=ax2得
解得.
∴y=-0.1x2.
∴该大门的高h为8.1m.
说明:此题还可以以AB所在直线为x轴,AB中点为原点,建立直角坐标系,可得抛物线解析式为
y=-0.1x2+8.1.
16. 设此二次函数的解析式为.
∵其图象经过点(-2,-5),
∴,∴,
∴
11.2; 12. ; 13.①③②; 14. 1,2,3.
1.D 2.B 3.B 4.C 5.A 6.B 7.D 8.B 9.A 10.B
23.如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.
(1)建立如图所示的直角坐标系,求抛物线的表达式;
(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少.
第22章《二次函数》答案
22.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰好在水面中心,安装在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线的形状如图(1)和(2)所示,建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系式是y=-x2+2x+,请你寻求:
(1)柱子OA的高度为多少米?
(2)喷出的水流距水平面的最大高度是多少?
(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外.
21.已知抛物线y=ax2+6x-8与直线y=-3x相交于点A(1,m).
(1)求抛物线的解析式;
(2)请问(1)中的抛物线经过怎样的平移就可以得到y=ax2的图象?
20.抛物线.
(1)用配方法求顶点坐标,对称轴;
(2)取何值时,随的增大而减小?
(3)取何值时,=0;取何值时,>0;取何值时,<0 .
19. 已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x =1时,y =-1;当x = 3时,y = 5.求y关于x的函数关系式.
18.如图,已知一抛物线形大门,其地面宽度AB=18m.一同学站在门内,在离门脚B点1m远的D处,垂直地面立起一根1.7m长的木杆,其顶端恰好顶在抛物线形门上C处.根据这些条件,请你求出该大门的高h.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com