题目列表(包括答案和解析)

 0  89494  89502  89508  89512  89518  89520  89524  89530  89532  89538  89544  89548  89550  89554  89560  89562  89568  89572  89574  89578  89580  89584  89586  89588  89589  89590  89592  89593  89594  89596  89598  89602  89604  89608  89610  89614  89620  89622  89628  89632  89634  89638  89644  89650  89652  89658  89662  89664  89670  89674  89680  89688  447348 

9、(08山东聊城)25.(本题满分12分)如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).

(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?

(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;

(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.

试题详情

8、(08山东济宁)26. 中,cm.长为1cm的线段的边上沿方向以1cm/s的速度向点运动(运动前点与点重合).过分别作的垂线交直角边于两点,线段运动的时间为s.

(1)若的面积为,写出的函数关系式(写出自变量的取值范围);

(2)线段运动过程中,四边形有可能成为矩形吗?若有可能,求出此时的值;若不可能,说明理由;

(3)为何值时,以为顶点的三角形与相似?

 

试题详情

7、(江苏省镇江市) 22.推理运算

二次函数的图象经过点

(1)求此二次函数的关系式;

(2)求此二次函数图象的顶点坐标;

(3)填空:把二次函数的图象沿坐标轴方向最少平移      个单位,使得该图象的顶点在原点.

试题详情

6、(2008年贵阳市)25.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.

设每个房间每天的定价增加元.求:

(1)房间每天的入住量(间)关于(元)的函数关系式.(3分)

(2)该宾馆每天的房间收费(元)关于(元)的函数关系式.(3分)

(3)该宾馆客房部每天的利润(元)关于(元)的函数关系式;当每个房间的定价为每天多少元时,有最大值?最大值是多少?(6分)

试题详情

5、 (2008茂名市)24.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:

销售单价(元∕件)
……
30
40
50
60
……
每天销售量(件)
……
500
400
300
200
……

   (1)把上表中的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想的函数关系,并求出函数关系式;(4分)

   (2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)(4分)

   (3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?(2分)

解:

新 课 标第 一网

试题详情

4、(福建省厦门市2008)24. 已知:抛物线经过点

(1)求的值;

(2)若,求这条抛物线的顶点坐标;

(3)若,过点作直线轴,交轴于点,交抛物线于另一点,且,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)

试题详情

3、(莆田市)23.(12分)枇杷是莆田名果之一,某果园有100棵枇杷树。每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克?

   注:抛物线的顶点坐标是

试题详情

2、(08安徽)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,如图。

(1)求演员弹跳离地面的最大高度;

[解]

(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由。

[解]

.

试题详情

1、(08北京)1、在平面直角坐标系中,抛物线轴交于两点(点在点的左侧),与轴交于点,点的坐标为,将直线沿轴向上平移3个单位长度后恰好经过两点.

(1)求直线及抛物线的解析式;

(2)设抛物线的顶点为,点在抛物线的对称轴上,且,求点的坐标;

(3)连结,求两角和的度数.

试题详情

12、. (08德州)7.若A(),B(),C()为二次函数的图象上的三点,则的大小关系是    

A.               B.    

C.              D.   

试题详情


同步练习册答案