题目列表(包括答案和解析)
4.半径分别为3cm和4cm的⊙O和⊙O相交于M、N两点,如果OM⊥OM,则公共弦MN的长是___________cm。
3.两个同心圆的半径分别是5cm和4cm,大圆的一条长为8cm的弦AB与小圆相交于C、D两点,则CD=____________cm。
2.已知⊙O和⊙O外切,都与⊙O内切,如果OO=3,OO=1,OO=2,则⊙O、⊙O与⊙O的半径分别是__________。
1.两个半径相等的⊙O和⊙O分别与⊙O外切和内切,并且OO=7cm,OO=5cm,则⊙O与⊙O的半径分别是___________。
3.3 圆与圆的位置关系 同步练习
A卷
27、解:如图所示,连接CD,∵直线为⊙C的切线,∴CD⊥AD。
∵C点坐标为(1,0),∴OC=1,即⊙C的半径为1,∴CD=OC=1。
又∵点A的坐标为(-1,0),∴AC=2,∴∠CAD=30°。
作DE⊥AC于E点,则∠CDE=∠CAD=30°,∴CE=,
,∴OE=OC-CE=,∴点D的坐标为(,)。
设直线的函数解析式为,则 解得k=,b=,
∴直线的函数解析式为y=x+.
26、(1)证明:连接OD,∵AB是直径,AB⊥CD,∴∠COB=∠DOB=。
又∵∠CPD=,∴∠CPD=∠COB。
(2)∠CP′D与∠COB的数量关系是:∠CP′D+∠COB=180°。
证明:∵∠CPD+∠CP′D=180°,∠CPD=∠COB,∴∠CP′D+∠COB=180°。
25、证法一:分别连接OA、OB。
∵OB=OA,∴∠A=∠B。又∵AC=BD,∴△AOC≌△BOD,∴OC=OD,
证法二:过点O作OE⊥AB于E,∴AE=BE。∵AC=BD,∴CE=ED,∴△OCE≌△ODE,∴OC=OD。
24、(1)①BA⊥EF;②∠CAE=∠B;③∠BAF=90°。
(2)连接AO并延长交⊙O于点D,连接CD,
则AD为⊙O的直径,∴∠D+∠DAC=90°。
∵∠D与∠B同对弧AC,∴∠D=∠B,
又∵∠CAE=∠B,∴∠D=∠CAE,
∴∠DAC+∠EAC=90°,
∴EF是⊙O的切线。
23、解:设∠AOC=,∵BC的长为,∴,解得。
∵AC为⊙O的切线,∴△AOC为直角三角形,∴OA=2OC=16 cm,∴AB=OA-OB=8 cm。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com