题目列表(包括答案和解析)
3.工程设计问题类
工程设计问题是指运用数学知识对工程的定位、大小、采光等情况进行合理布局、计算的一类问题.
[例3] 要在墙上开一个上部为半圆,下部为矩形的窗户(如图2.9-2所示),在窗框为定长l的条件下,要使窗户透光面积最大,窗户应具有怎样的尺寸?
解 设半圆的直径为x,矩形的高度为y,窗户透光面积为S,则
面积最大.
说明 应用二次函数解实际问题,关键是设好适当的一个变量,建立目标函数.
[例4] 要使火车安全行驶,按规定,铁道转弯处的圆弧半径不允许小于600米,如果某段铁路两端相距156米,弧所对的圆心角小于180°,试确定圆弧弓形的高所允许的取值范围.
解 设园的半径为R,圆弧弓形高CD=x(m).
在Rt△BOD中,DB=78,OD=B-x
∴(R-x)2+782=R2
由题意知R≥600
得x2-1200x+6084≥0(x>0),解得x≤5.1或x≥1194.9(舍)
∴圆弧弓形高的允许值范围是(0,5.1].
2.行程问题类
[例2] 已知,A、B两地相距150公里,某人开汽车以60公里/小时的速度从A地到达B地,在B地停留一小时后再以50公里/小时的速度返回A地,求汽车离开A地的距离x表示为时间t的函数.
解 根据题意:
(1)汽车由A到B行驶t小时所走的距离x=60t,(0≤t≤2.5)
(2)汽车在B地停留1小时,则B地到A地的距离x=150(2.5<x≤3.5)
(3)由B地返回A地,则B地到A地的距离x=150-50(t-3.5)=325-50t(3.5<x≤6.5)
1.几何问题类
用函数思想解决几何(如平面几何、立体几何及解析析几何)问题,这是常常出现的数学本身的综合运用问题.
[例1] 如图2.9-1,一动点P自边长为1的正方形ABCD的顶点A出发,沿正方形的边界运动一周,再回到A点.若点P的路程为x,点P到顶点A的距离为y,求A、P两点间的距离y与点P的路程x之间的函数关系式.
解 (1)当点P在AB上,即0≤x≤1时,AP=x,也就是y=x.
(2)当点P在BC边上,即1<x≤2时,AB=1,AB+BP=x,BP=x-1,根据勾股定理,得AP2=AB2+BP2
(3)当点P在DC边上,即2<x≤3时,AD=1,DP=3-x.根据勾股定理,得AP2=AD2+DP2.
(4)当点P在AD边上,即3<x≤4时,有y=AP=4-x.
∴所求的函数关系式为
2.3.1 函数的单调性·例题解析
[例1]求下列函数的增区间与减区间
(1)y=|x2+2x-3|
解 (1)令f(x)=x2+2x-3=(x+1)2-4.
先作出f(x)的图像,保留其在x轴及x轴上方部分,把它在x轴下方的图像翻到x轴就得到y=|x2+2x-3|的图像,如图2.3-1所示.
由图像易得:
递增区间是[-3,-1],[1,+∞)
递减区间是(-∞,-3],[-1,1]
(2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间.
解 当x-1≥0且x-1≠1时,得x≥1且x≠2,则函数y=-x.
当x-1<0且x-1≠-1时,得x<1且x≠0时,则函数y=x-2.</PGN0071B.TXT/PGN>
∴增区间是(-∞,0)和(0,1)
减区间是[1,2)和(2,+∞)
(3)解:由-x2-2x+3≥0,得-3≤x≤1.
令u==g(x)=-x2-2x+3=-(x+1)2+4.在x∈[-3,-1]上是在x∈[-1,1]上是.
∴函数y的增区间是[-3,-1],减区间是[-1,1].
[例2]函数f(x)=ax2-(3a-1)x+a2在[-1,+∞]上是增函数,求实数a的取值范围.
解 当a=0时,f(x)=x在区间[1,+∞)上是增函数.
若a<0时,无解.
∴a的取值范围是0≤a≤1.
[例3]已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,试比较大小:
(1)f(6)与f(4)
解 (1)∵y=f(x)的图像开口向下,且对称轴是x=3,∴x≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4)
时为减函数.
解 任取两个值x1、x2∈(-1,1),且x1<x2.
当a>0时,f(x)在(-1,1)上是减函数.
当a<0时,f(x)在(-1,1)上是增函数.
[例5]利用函数单调性定义证明函数f(x)=-x3+1在(-∞,+∞)上是减函数.
证 取任意两个值x1,x2∈(-∞,+∞)且x1<x2.
又∵x1-x2<0,∴f(x2)<f(x1)
故f(x)在(-∞,+∞)上是减函数.
得f(x)在(-∞,+∞)上是减函数.
解 定义域为(-∞,0)∪(0,+∞),任取定义域内两个值x1、x2,且x1<x2.
∴当0<x1<x2≤1或-1≤x1<x2<0时,有x1x2-1<0,x1x2>0,f(x1)>f(x2)
∴f(x)在(0,1],[-1,0)上为减函数.
当1≤x1<x2或x1<x2≤-1时,有x1x2-1>0,x1x2>0,f(x1)>f(x2),∴f(x)在(-∞,-1],[1,+∞)上为增函数.
根据上面讨论的单调区间的结果,又x>0时,f(x)min=f(1)=2,当x<0时,f(x)max=f(-1)=-2.由上述的单调区间及最值可大致
说明 1°要掌握利用单调性比较两个数的大小.
2°注意对参数的讨论(如例4).
3°在证明函数的单调性时,要灵活运用配方法、判别式法及讨论方法等.(如例5)
4°例6是分层讨论,要逐步培养.
2.2 函数·例题解析</PGN0062A.TXT/PGN>
[例1]判断下列各式,哪个能确定y是x的函数?为什么?
(1)x2+y=1
(2)x+y2=1
解 (1)由x2+y=1得y=1-x2,它能确定y是x的函数.
于任意的x∈{x|x≤1},其函数值不是唯一的.
[例2]下列各组式是否表示同一个函数,为什么?
解 (1)中两式的定义域部是R,对应法则相同,故两式为相同函数.
(2)、(3)中两式子的定义域不同,故两式表示的是不同函数.
(4)中两式的定义域都是-1≤x≤1,对应法则也相同,故两式子是相同函数.</PGN0062B.TXT/PGN>
[例3]求下列函数的定义域:
[例4]已知函数f(x)的定义域是[0,1],求下列函数的定义域:
求实数a的取值范围.
为所求a的取值范围.
[例6]求下列函数的值域:
(1)y=-5x2+1
(3)y=x2-5x+6,x∈[-1,1)
(4)y=x2-5x+6,x∈[-1,3]
(9)y=|x-2|-|x+1|
解 (1)∵x∈R,∴-5x2+1≤1,值域y≤1.
(6)定义域为R
(7)解:定义域x≠1且x≠2
(y-4)x2-3(y-4)x+(2y-5)=0 ①
当y-4≠0时,∵方程①有实根,∴Δ≥0,
即9(y-4)2-4(y-4)(2y-5)≥0
化简得y2-20y+64≥0,得
y<4或y≥16
当y=4时,①式不成立.
故值域为y<4或y≥16.
函数y在t≥0时为增函数(见图2.2-3).
(9)解:去掉绝对值符号,</PGN0065B.TXT/PGN>
其图像如图2.2-4所示.
由图2.2-4可得值域y∈[-3,3].
说明 求函数值域的方法:
1°观察法:常利用非负数:平方数、算术根、绝对值等.(如例1,2)
2°求二次函数在指定区间的值域(最值)问题,常用配方,借助二次函数的图像性质结合对称轴的位置处理.假如求函数f(x)=ax2+bx+c(a>0),在给定区间[m,n]的值域(或最值),分三种情况考虑:
(如例5)可做公式用.
法求y的范围(如例6-7).
为二次函数求值域.但要注意中间量t的范围(如例6-8).
6°分离有界变量法:从已知函数式中把有界变量解出来.利用有界变量的范围,求函数y的值域(如例6-6).
7°图像法(如例6-9):
由于求函数值域不像求函数定义域那样有一定的法则和程序可寻,它要根据函数解析式的不同特点灵活用各种方法求解.
解 (2)∵f(-7)=10,∴f[f(-7)]=f(10)=100.
说明 本例较简单,但主要用意是深刻理解函数符号f(x)的意义.求分段函数值时,要注意在定义域内进行.
[例8]根据已知条件,求函数表达式.
(1)已知f(x)=3x2-1,求①f(x-1),②f(x2).
(2)已知f(x)=3x2+1,g(x)=2x-1,求f[g(x)].
求f(x).
(4)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x).
(5)设周长为a(a>0)的等腰三角形,其腰长为x,底边长为y,试将y表示为x的函数,并求它的定义域和值域.
(1)分析:本题相当于x=x-1时的函数值,用代入法可求得函数表达式.
解 ∵f(x)=3x2-1
∴f(x-1)=3(x-1)2-1=3x2-6x+2
f(x2)=3(x2)2-1=3x4-1
(2)分析:函数f[g(x)]表示将函数f(x)中的x用g(x)来代替而得到的解析式,∴仍用代入法求解.
解 由已知得f[g(x)]=3(2x-1)2+1=12x2-12x+4
法(或观察法).
∴x=(t+1)2代入原式有f(t)=(t+1)2-6(t+1)-7
=t2-4t-12 (t≥-1)
即f(x)=x2-4x-12 (x≥-1)
说明 解法二是用的换元法.注意两种方法都涉及到中间量的问题,必须要确定中间量的范围,要熟练掌握换元法.
(4)分析:本题已给出函数的基本特征,即二次函数,可采用待定系数法求解.
解 设f(x)=ax2+bx+c(a≠0)
由f(0)=2,得c=2.由f(x+1)-f(x)=x-1,得恒等式2ax+
说明 待定系数是重要的数学方法,应熟练掌握.
(5)解:∵2x+y=a,∴y=a-2x为所求函数式.
∵三角形任意两边之和大于第三边,
∴得2x+2x>a,又∵y>0,
说明 求实际问题函数表达式,重点是分析实际问题中数量关系并建立函数解析式,其定义域与值域,要考虑实际问题的意义.
当x>5时,原不等式可化为
x-5-(2x+3)<1,
解之得x>-9,所以x>5.
说明:在含有绝对值的不等式中,“去绝对值”是基本策略.
例13 解不等式|2x-1|>|2x-3|.
分析 本题也可采取前一题的方法:采取用零点分区间讨论去掉绝
之,则更显得流畅,简捷.
解 原不等式同解于
(2x-1)2>(2x-3)2,
即4x2-4x+1>4x2-12x+9,
即8x>8,得x>1.
所以原不等式的解集为{x|x>1}.
说明:本题中,如果把2x当作数轴上的动坐标,则|2x-1|>|2x-3|表示2x到1的距离大于2x到3的距离,则2x应当在2的右边,从而2x>2即x>1.
2.4 反函数·例题解析
[例1]求下列函数的反函数:
解 (2)∵y=(x-1)2+2,x∈(-∞,0]其值域为y∈[2,+∞),
[例2]求出下列函数的反函数,并画出原函数和其反函数的图像.
解 (1)∵已知函数的定义域是x≥1,∴值域为y≥-1,
解 (2)由y=-3x2-2(x≤0)得值域y≤-2,
它们的图像如图2.4-2所示.
(1)求它的反函数;(2)求使f-1(x)=f(x)的实数a的值.
令x=0,∴a=-3.
或解 由f(x)=f-1(x),那么函数f(x)与f-1(x)的定义域和值域相同,定义域是{x|x≠a,x∈R},值域y∈{y|y≠3,y∈R},∴-a=3即a=-3.
试求a、b、c、d满足什么条件时,它的反函数仍是自身.
令x=0,得-a=d,即a+d=0.
事实上,当a+d=0时,必有f-1(x)=f(x),
因此所求的条件是bc-ad≠0,且a+d=0.
[例5]设点M(1,2)既在函数f(x)=ax2+b(x≥0)的图像上,又在它的反函数图像上,(1)求f-1(x),(2)证明f-1(x)在其定义域内是减函数.
解法(二) 由函数y=f(x)与其反函数y=f-1(x)之间的一一对应关
因为原函数的图像与其反函数的图像关于直线y=x对称,
∴函数y=f(x)的图像关于直线y=x对称.
2.7 对数·例题解析
[例1] 计算:
(2)lg22+lg4·lg50+lg250
(2)原式=lg22+2lg2·(1+lg5)+(1+lg5)2=(lg2+1+lg5)2=4
[例2] (1)已知10x=2,10y=3,求1002x-y的值.
(2)已知log89=a,log25=b,用a、b表示lg3.
解 (1)∵10x=2∴lg2=x,∵10y=3∴lg3=y则1002x-y=
②
证 设8x=9y=6z=k(k>0,且k≠1)则x=log8k,y=log9k,z=log6k,
解法二 设Sx=Ax2+Bx(x∈N)
①-②,得A(m2-n2)+B(m-n)=n-m
∵m≠n ∴ A(m+n)+B=-1
故A(m+n)2+B(m+n)=-(m+n)
即Sm+n=-(m+n)
说明 a1,d是等差数列的基本元素,通常是先求出基本元素,再
解的“整体化”思想,在解有关数列题目中值得借鉴.解法二中,由于是等差数列,由例22,故可设Sx=Ax2+Bx.(x∈N)
[例14] 在项数为2n的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n之值是多少?
解 ∵S偶项-S奇项=nd
∴nd=90-75=15
又由a2n-a1=27,即(2n-1)d=27
[例15] 在等差数列{an}中,已知a1=25,S9=S17,问数列前多少项和最大,并求出最大值.
解法一 建立Sn关于n的函数,运用函数思想,求最大值.
∵a1=25,S17=S9 解得d=-2
∴当n=13时,Sn最大,最大值S13=169
解法二 因为a1=25>0,d=-2<0,所以数列{an}是递减等
∵a1=25,S9=S17
∴an=25+(n-1)(-2)=-2n+27
即前13项和最大,由等差数列的前n项和公式可求得S13=169.
解法三 利用S9=S17寻找相邻项的关系.
由题意S9=S17得a10+a11+a12+…+a17=0
而a10+a17=a11+a16=a12+a15=a13+a14
∴a13+a14=0,a13=-a14 ∴a13≥0,a14≤0
∴S13=169最大.
解法四 根据等差数列前n项和的函数图像,确定取最大值时的n.
∵{an}是等差数列
∴可设Sn=An2+Bn
二次函数y=Ax2+Bx的图像过原点,如图3.2-1所示
∵S9=S17,
∴取n=13时,S13=169最大
122.作出函数y=tg2x|ctgx|的图象,写出它的单调区间.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com